右美托咪定调控miRNA-146a对COPD肺损伤的保护作用及机制
本文选题:右美托咪定 + COPD ; 参考:《南方医科大学》2017年博士论文
【摘要】:研究背景及目的慢性阻塞性肺疾病(Chronic obstructive pulmonary disease,COPD)是一种以气道、肺组织为损伤部位,以持续性气流受限为特征的慢性支气管炎和(或)肺气肿,可进展为肺源性心脏病和呼吸衰竭的常见慢性肺部疾病,与气道和肺组织对有毒气体或有害颗粒产生异常炎性反应有关,具有较高发病率、致残率和致死率,造成严重社会经济负担。右美托咪定(Dexmedetomidine,Dex)是一种新型高选择性α2肾上腺素能受体激动剂,是临床常用麻醉辅助药物。越来越多临床研究表明,右美托咪定可通过抑制细胞凋亡、减轻炎症反应和细胞氧化应激反应等机制对大脑、心脏、肾脏、肝脏及肺脏等多种器官起保护作用,其中,尤以肺脏保护作用最为明显。miRNA-146a是近年来研究热点,其可靶定TLR4/依赖MyD88途径重要组成部分TNF受体相关因子6(TRAF6)和白细胞介素1受体相关激酶1(IRAK1),激活TLR4下游信号分子NF-κB,诱导大量炎症因子,如IL-6、IL-1β、TNF-α等表达释放,促进炎症反应级联放大,参与COPD炎症相关发病过程,可能是COPD治疗新靶点。由此,我们提出假设,右美托咪定可调控miRNA-146a对COPD肺损伤起到保护作用,其明确机制尚不清楚,是本课题研究重点,也是创新之处。本研究拟建立COPD大鼠模型,明确COPD大鼠肺损伤的病理基础;阐明右美托咪定调控miRNA-146a对COPD肺损伤的保护作用及机制。第一部分COPD大鼠动物模型的建立及肺功能检测与组织学检查目的建立COPD肺损伤大鼠动物模型,通过观察大鼠一般状况、肺功能检测、动脉血气分析、支气管肺泡灌洗液检测以及肺组织病理学检查,明确COPD肺损伤的病理基础。方法选取16只SD大鼠并随机分为2组,空白对照组(8只)和COPD组(8只),利用烟雾熏吸法建立大鼠COPD肺损伤模型,检测肺功能指标如潮气量(Tidal volume,TV)、最大呼气流量(Peak expiratory flow,PEF)、50%肺活量最大呼气流量(EF 50)、0.3秒用力呼气容积(FEV0.3)和FEV0.3与用力肺活量(FVC)比值(FEV0.3/FVC);分析大鼠动脉血氧分压(Pa02)和二氧化碳分压(PaC02);收取大鼠支气管肺泡灌洗液,并进行细胞计数、分类及蛋白质含量检测;取大鼠肺组织,行湿/干重比检测和组织病理学检查。结果1.一般状况:空白对照组大鼠实验过程中饮食、饮水正常,体重增长正常,毛发光滑,无明显呼吸道症状;COPD组大鼠逐渐出现厌食、体重减轻、毛发暗黄脱落、活动减少,并出现喷嚏、喘息以及呼吸频率增快等呼吸道症状。2.肺功能检测:空白对照组大鼠TV为2.65±0.21 mL,PEF为38.55±0.24 mL/s,EF50 为 1.81±0.06 mL/s,FEV0.3 为 4.44±0.26 mL,而 FEV0.3/FVC 为 88.45±0.34%;COPD 组大鼠 TV 为 1.26±0.17 mL,PEF 为 17.61±0.35 mL/s,EF50 为 1.20±0.14 mL/s,FEV0.3 为 2.52±0.28 mL,FEV0.3/FVC 为 63.39±0.22%。COPD 组大鼠TV、PEF、EF 50、FEV0.3和FEV0.3/FVC均显著低于空白对照组大鼠(0.05)。3.动脉血气分析:空白对照组大鼠动脉血Pa02为89.35±4.30 mmHg,而COPD组动脉血Pa02为73.12±5.11 mmHg,COPD组大鼠动脉血Pa02显著低于空白对照组大鼠动脉血Pa02(p0.05)。空白对照组大鼠动脉血PaCO2为43.22±5.19 mmHg,而 COPD 组动脉血 PaCO2 为 56.36±6.71 mmHg,COPD 组大鼠动脉血PaC02显著高于空白对照组大鼠动脉血PaC02(p0.05)。4.支气管肺泡灌洗液(BALF)细胞计数及蛋白浓度检测:相比于空白对照组,COPD组大鼠BALF白细胞总数显著增加(2.33±1.19×1 08/L vs.1.45±0.41 × 108/L,p0.05),且中性粒细胞比例显著增高(17.4±7.2%vs.8.6±3.4%,p0.05),单核巨噬细胞比例显著减低(73.3±2.6%vs.83.4±1.1%,p0.05),淋巴细胞比例无显著性差异(8.1±2.0%vs.7.8±2.7%,p0.05)。空白对照组大鼠BALF蛋白含量为193.19±33.21 mg/L,COPD组大鼠BALF蛋白含量为363.93±41.38 mg/L,COPD组大鼠BALF蛋白含量显著高于空白对照组大鼠BALF 蛋白含量(p0.05)。5.大鼠肺脏湿/干重比(W/D):空白对照组大鼠肺脏整体观呈粉红色,W/D为4.02±0.39,而COPD组大鼠肺脏整体观色泽苍白,肺表面可见大小不等肺大疱,W/D为5.41±1.03,COPD组大鼠肺脏W/D显著高于空白对照组大鼠肺脏W/D(p0.05)。6.肺组织病理学变化:空白对照组肺组织切片镜下可见支气管上皮纤毛丰富、排列整齐、未见脱落,支气管管壁规整、未见增厚及炎性细胞浸润,管腔内未见炎性渗出物,肺泡腔结构完整、未见明显病理性扩大。COPD组肺组织切片镜下可见支气管纤毛柱状上皮呈锯齿样增生增厚,纤毛脱落倒伏,粘膜下腺体增生肥大,炎性细胞广泛浸润,杯状细胞增生,支气管管腔内粘液蓄积,管壁结缔组织增生,平滑肌增厚,可见单核细胞和淋巴细胞浸润,肺泡大小不等、结构紊乱,肺泡壁变薄、断裂,肺泡腔扩大,部分融合成较大的囊腔。结论烟雾熏吸法可有效建立COPD肺损伤大鼠模型,可明确典型COPD肺损伤的病理基础。第二部分右美托咪定降低miRNA-146a表达抑制COPD大鼠肺泡上皮细胞凋亡目的研究右美托咪定对具有介导COPD大鼠肺泡上皮细胞凋亡作用的miRNA-146a表达的影响,利用流式细胞仪、实时定量PCR检测miRNA-146a以及凋亡相关因子p53和Bcl-2表达水平改变,以期明确右美托咪定对COPD肺损伤的保护机制。方法选取24只SD大鼠并随机分为3组:空白对照组(8只)、COPD未给药组(8只)和COPD右美托咪定给药组(8只)。分离、纯化、培养各组大鼠肺泡上皮细胞。空白对照组肺泡上皮细胞取自正常大鼠肺组织,COPD未给药组和COPD右美托咪定给药组肺泡上皮细胞取自COPD大鼠模型肺组织,COPD右美托咪定给药组加入5 μM右美托咪定培养3天,空白对照组和COPD未给药组将给予等量生理盐水培养3天,进行细胞凋亡检测和实时定量PCR检测,明确细胞凋亡情况和miRNA-146a以及凋亡相关因子p53和Bcl-2的表达水平。结果1.肺泡上皮细胞凋亡流式细胞仪检测结果显示:COPD未给药组和COPD右美托咪定给药组损伤细胞比例、坏死细胞比例和凋亡细胞比例均较正常对照组显著升高(p0.05),而正常存活细胞比例显著降低(p0.05);COPD右美托咪定给药组损伤细胞比例和凋亡细胞比例较COPD未给药组显著降低(p0.05),正常存活细胞比例则显著增高(p0.05)。COPD右美托咪定给药组肺泡上皮细胞凋亡率较COPD未给药组显著降低(11.15±0.51vs30.19±1.61%,p0.05)。2.右美托咪定抑制miRNA-146a基因表达情况实时定量PCR检测结果显示:COPD未给药组和COPD右美托咪定给药组miRNA-146a表达明显高于空白对照组(p0.05),但COPD右美托咪定给药组miRNA-146a表达明显低于COPD未给药组(p0.05)。3.右美托咪定抑制p53基因表达情况实时定量PCR检测结果显示:COPD未给药组和COPD右美托咪定给药组p53表达明显高于空白对照组(p0.05),但COPD右美托咪定给药组p53表达明显低于COPD未给药组(p0.05)。4.右美托咪定抑制Bcl-2基因表达情况实时定量PCR检测结果显示:COPD未给药组和COPD右美托咪定给药组Bcl-2表达明显高于空白对照组(p0.05),但COPD右美托咪定给药组Bcl-2表达明显低于COPD未给药组(p0.05)。结论miRNA-146a通过p53和Bcl-2介导肺泡上皮细胞凋亡,右美托咪定可降低miRNA-146a表达抑制COPD大鼠肺泡上皮细胞凋亡从而有效保护肺组织。
[Abstract]:Background and objective Chronic obstructive pulmonary disease (COPD) is a chronic bronchitis and / or emphysema characterized by airway and lung tissue injury, characterized by persistent airflow limitation, and can be developed as a common chronic pulmonary disease of pulmonary heart disease and respiratory failure, with airway and lung tissue. Dexmedetomidine (Dex) is a new type of high selective alpha 2 adrenergic receptor agonist, which is a kind of high selective alpha 2 adrenergic receptor agonist. More and more clinical studies have shown that Dexmedetomidine can protect the brain, heart, kidney, liver, lung and other organs by inhibiting apoptosis, alleviating inflammatory reaction and cell oxidative stress. Especially, the most obvious.MiRNA-146a of lung protection is the research heat point in recent years, and the target TLR4/ depends on the important component of the MyD88 pathway, T NF receptor related factor 6 (TRAF6) and interleukin 1 receptor related kinase 1 (IRAK1) activate NF- kappa B of the downstream signal molecules of TLR4, inducing a large number of inflammatory factors, such as IL-6, IL-1 beta, and TNF- alpha, to release the expression of IL-6, IL-1 beta, and TNF- alpha, to promote the cascade of inflammatory reactions and to participate in the pathogenesis related pathogenesis of COPD, which may be a new target for COPD treatment. Amidazine can regulate the protective effect of miRNA-146a on COPD lung injury. Its clear mechanism is not clear, it is the focus of this study, and it is also an innovation. This study is to establish a COPD rat model to clarify the pathological basis of lung injury in COPD rats, and to clarify the protective effect and mechanism of right metoimidin on COPD lung injury by miRNA-146a. The establishment of COPD rat model and lung function detection and histological examination were established to establish the rat model of COPD lung injury. The pathological basis of COPD lung injury was confirmed by observing the general condition of the rat, the lung function test, the arterial blood gas analysis, the bronchoalveolar lavage fluid and the pathological examination of the lung tissue. Methods 16 SD were selected. Rats were randomly divided into 2 groups, blank control group (8 rats) and COPD group (8 rats). COPD lung injury model was established by smoke fumigation. The lung function indexes such as tidal volume (Tidal volume, TV), maximum expiratory flow (Peak expiratory flow, PEF), 50% vital expiratory flow (EF 50), 0.3 second forced expiratory volume (FEV0.3) and FEV0.3 and exertion were measured. Lung activity (FVC) ratio (FEV0.3/FVC); analysis of rat arterial oxygen pressure (Pa02) and carbon dioxide partial pressure (PaC02); collection of rat bronchoalveolar lavage fluid, cell count, classification and protein content detection; rat lung tissue, wet / dry weight ratio test and histopathology examination. Results 1. general condition: blank control group rats Diet, normal drinking water, normal weight growth, smooth hair and no obvious respiratory symptoms; group COPD rats gradually appeared anorexia, weight loss, dark yellow and shedding of hair, reduced activity, and respiratory symptoms of respiratory symptoms, such as sneezing, wheezing and increasing respiratory rate, and.2. lung function test: the TV in the blank control group was 2.65 + 0.21 mL, PEF was 38.5. 5 + 0.24 mL/s, EF50 is 1.81 + 0.06 mL/s, FEV0.3 is 4.44 + 0.26 mL, and FEV0.3/FVC is 88.45 + 0.34%, TV in COPD group is 1.26 + 0.17 mL, PEF is 17.61 + 0.35 mL/s, EF50 is 1.20. The arterial blood gas analysis in the white control group (0.05).3. artery blood gas analysis: the arterial blood of the blank control group was 89.35 + 4.30 mmHg, and the arterial blood of the COPD group was 73.12 + 5.11 mmHg, and the arterial blood Pa02 of the COPD group was significantly lower than that of the blank control group (P0.05). The arterial blood of the blank control group was 43.22 + 5.19 mmHg, while the arterial blood of the control group was 43.22 + 5.19. PaCO2 was 56.36 + 6.71 mmHg, and the arterial blood PaC02 of group COPD rats was significantly higher than that of PaC02 (P0.05).4. bronchoalveolar lavage (BALF) cell count and protein concentration in the arterial blood of the blank control group. Compared with the blank control group, the total number of BALF leucocytes in the COPD group rats increased significantly (2.33 + 1.19 * 1 08/L vs.1.45 0.41 * 0.41), and The proportion of neutrophils increased significantly (17.4 + 7.2%vs.8.6 + 3.4%, P0.05), the proportion of mononuclear macrophages decreased significantly (73.3 + 2.6%vs.83.4 + 1.1%, P0.05), and there was no significant difference in the proportion of lymphocytes (8.1 + 2.0%vs.7.8 2.7%, P0.05). The content of BALF protein in the blank control group was 193.19 + 33.21 mg/L, and the BALF protein content of COPD group was 363.93 + 41. The content of BALF protein in.38 mg/L, group COPD rats was significantly higher than that of BALF protein content (P0.05) in the blank control group (P0.05), the lung wet / dry weight ratio (W/D) in.5. rats: the whole view of lung in the blank control group was pink, W/D was 4.02 + 0.39, while the lungs of the COPD group were pale with the whole lung, and the lung surface showed the size of different lung bullus, W/D 5.41 + 1.03. COPD The lung W/D in the rats of the group was significantly higher than that in the lungs of the blank control group. The lung tissue of W/D (P0.05).6. lung tissue was found in the blank control group. The lung tissue section of the blank control group showed that the bronchoepithelial cilium was rich and orderly. The bronchial tube wall was not shedding, the bronchial tube wall was regular, no thickening and inflammatory cell infiltration, no inflammatory exudation was found in the lumen, and the alveolar cavity was intact. There was no obvious pathological enlargement of.COPD group in the lung tissue section, which showed that the bronchial ciliated columnar epithelium was thickened with serrated hyperplasia, ciliated and lodged, the submucous gland hyperplasia and hypertrophy, extensive infiltration of inflammatory cells, goblet cell proliferation, mucus accumulation in the bronchus cavity, hyperplasia of connective tissue in the tube wall, thickening of smooth muscle, and monocyte and monocyte. Lymphocyte infiltration, alveolar size, structure disorder, alveolar wall thinning, fracture, alveolar cavity enlargement, partial fusion into larger capsule cavity. Conclusion smoke fumigation can effectively establish a rat model of COPD lung injury, and can clarify the pathological basis of typical COPD lung injury. Second right metoimidin reduces miRNA-146a expression and inhibits the alveoli of COPD rats Objective to investigate the effect of dexmedetomidin on the expression of miRNA-146a expression in the apoptosis of alveolar epithelial cells in COPD rats, using flow cytometry, real-time quantitative PCR detection of miRNA-146a and the changes of p53 and Bcl-2 expression levels of apoptosis related factors, in order to clarify the protective mechanism of right metoimidin on COPD lung injury. 24 SD rats were randomly divided into 3 groups: blank control group (8), COPD non administration group (8) and COPD right metomomidine administration group (8). Isolated, purified and cultured rat alveolar epithelial cells. Alveolar epithelial cells in blank control group were derived from normal rats' lung tissue, COPD non administration group and COPD right metomomidin group's alveolar epithelium fine The cells were taken from the COPD rat model lung tissue, and the COPD right metomomomidine administration group was added to 5 u M dexmeimidin for 3 days. The blank control group and the COPD non administration group were given the same amount of normal saline for 3 days. The apoptosis detection and real-time quantitative PCR detection were carried out to determine the cell apoptosis and the table of miRNA-146a and apoptosis related factors p53 and Bcl-2. Results 1. the results of the 1. alveolar epithelial cell apoptosis flow cytometry showed that the proportion of damaged cells, the proportion of necrotic cells and the proportion of apoptotic cells in the group of COPD and right metomomidin increased significantly (P0.05), while the proportion of normal living cells decreased significantly (P0.05); COPD right metoimidin administration group The ratio of damaged cells and apoptotic cells was significantly lower than that of COPD (P0.05), and the proportion of normal living cells increased significantly (P0.05), the apoptosis rate of alveolar epithelial cells in.COPD dexmeimidine group was significantly lower than that in COPD group (11.15 + 0.51vs30.19 + 1.61%, P0.05).2. right metomomidin inhibition of miRNA-146a gene expression The results of quantitative PCR detection showed that the expression of miRNA-146a in the COPD group and COPD dexmedetomidine administration group was significantly higher than that in the blank control group (P0.05), but the miRNA-146a expression in the COPD right metoimidin group was significantly lower than that of the COPD non administration group (P0.05) (P0.05).3. right metomomidin The expression of p53 in the administration group and the COPD dexmedetomidine administration group was significantly higher than that in the blank control group (P0.05), but the expression of p53 in the COPD dexmedetomidin group was significantly lower than that in the COPD group (P0.05). The real-time quantitative PCR detection results of the inhibition of the Bcl-2 gene expression in the right metomomidin group (P0.05) showed that COPD was not given to the drug group and the right metoimidine administration group was expressed. It was significantly higher than that in the blank control group (P0.05), but the expression of Bcl-2 in the COPD dexmedetomidine administration group was significantly lower than that in the COPD group (P0.05). Conclusion miRNA-146a mediated the apoptosis of alveolar epithelial cells through p53 and Bcl-2, and dexmedetomidine could reduce the miRNA-146a expression to inhibit the apoptosis of pulmonary alveolar cells in COPD rats and effectively protect the lung tissue.
【学位授予单位】:南方医科大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:R614
【相似文献】
相关期刊论文 前10条
1 罗正曜;钨对实验性心、肺损伤的影响[J];自然杂志;1990年09期
2 邢宇彤,周钢,涂利丽,朱晓峰,战鹏,张福亭;右胸严重开放电击伤伴肺损伤救治成功1例[J];中华胸心血管外科杂志;2000年06期
3 黄永平,周世文;拉扎碱类防治肺损伤的研究进展[J];中国医院用药评价与分析;2002年04期
4 黄秀芬;恙虫病致肺损伤37例临床分析[J];中国医师杂志;2003年03期
5 张玉惠;急性坏死性胰腺炎肺损伤发病机制的研究进展[J];江西医学院学报;2004年01期
6 陈红兵;血小板源性生长因子致肺发育和肺损伤机制研究的新进展[J];实用儿科临床杂志;2004年04期
7 周泽钢;术中机械性肺损伤的救治体会[J];河南外科学杂志;2004年04期
8 张新红;王海龙;;血管内皮生长因子及其受体在肺损伤中作用的研究进展[J];中国急救医学;2008年12期
9 张启芳;梁志海;唐国都;邱小芬;覃锦耀;;巨噬细胞移动抑制因子在急性坏死性胰腺炎肺损伤中的表达及白介素-10的干预作用[J];中国现代医学杂志;2008年19期
10 王莉;;干细胞与肺损伤修复[J];临床肺科杂志;2009年05期
相关会议论文 前10条
1 徐金富;瞿介明;何礼贤;曹立环;赛音;余龙;马红辉;;携带促血管生成素1基因的间充质干细胞对脂多糖致肺损伤的干预研究[A];中华医学会第七次全国呼吸病学术会议暨学习班论文汇编[C];2006年
2 刘启发;罗晓丹;宁涓;徐丹;范志平;孙竞;张钰;徐兵;魏永强;;异基因造血干细胞移植后早期肺损伤与急性移植物抗宿主病的关系研究[A];第11次中国实验血液学会议论文汇编[C];2007年
3 王莹;;急性化学中毒性肺损伤治疗的几个技术问题[A];新世纪预防医学面临的挑战——中华预防医学会首届学术年会论文摘要集[C];2002年
4 白庆威;陈协群;王文清;朱华锋;刘玲莉;白燕妮;李蕊;;异基因造血干细胞移植后的免疫性肺损伤[A];第10届全国实验血液学会议论文摘要汇编[C];2005年
5 张劲松;陈彦;张芹;屠苏;康健;陈旭锋;;感染性肺损伤大鼠肺组织通透性时间效应的实验研究[A];第十一次全国急诊医学学术会议暨中华医学会急诊医学分会成立二十周年庆典论文汇编[C];2006年
6 夏仲芳;马爱闻;谈定玉;耿平;吉孝祥;杨燕;;丙烯醛吸入致重症肺损伤的治疗[A];中华医学会急诊医学分会第十三次全国急诊医学学术年会大会论文集[C];2010年
7 彭波;杜斌;单瑞生;;胰源性肺损伤发病机制[A];2001年全国中西医结合急救医学学术会议论文集[C];2001年
8 毛忠华;王舒;姜爽;王晓波;袭荣刚;;全氟异丁烯致肺损伤的治疗进展[A];2012年中国药学大会暨第十二届中国药师周论文集[C];2012年
9 夏照帆;马兵;卫伟;贾一韬;;活化素受体样激酶5活性抑制在炎性肺损伤发病机制中的意义[A];第五届全国烧伤救治专题研讨会烧伤后脏器损害的临床救治论文汇编[C];2007年
10 夏金根;孙兵;张恒;王春亭;詹庆元;;自主呼吸对健康兔模型中呼吸机诱导肺损伤的影响[A];中华医学会第五次全国重症医学大会论文汇编[C];2011年
相关重要报纸文章 前10条
1 记者 谭嘉 通讯员 邱志涛;烧伤肺损伤防控技术取得重要突破[N];健康报;2013年
2 白毅;我国防化研究获进展[N];中国医药报;2002年
3 ;拉扎碱类药预防肺损伤研究近况[N];中国医药报;2003年
4 邹争春;新型蛋白MG53可有效抵御肺损伤[N];中国医药报;2014年
5 武警总医院急救医学中心主任 王立祥邋孙鲲 整理;控制ARDS要五早[N];健康报;2008年
6 特约记者 邹争春;新型蛋白MG53可有效抵御肺损伤[N];健康报;2014年
7 上海长海中医医院 苏永华 副主任医师;化疗常见副作用——肺损伤[N];上海中医药报;2013年
8 王雪飞 马威 王云彦;SARS病毒如何引发肺损伤[N];健康报;2005年
9 第三军医大学大坪医院儿科副主任 胡章雪 整理 邹争春;孕期胆汁淤积 为何致孩子肺损伤[N];健康报;2013年
10 刘苹 邹争春;血浆谷氨酸升高是脑源性肺损伤的重要原因[N];中国医药报;2013年
相关博士学位论文 前10条
1 吴晓丹;肾上腺素刺激的骨髓间充质干细胞移植干预实验性肺损伤的研究[D];复旦大学;2014年
2 潘维忠;依法利珠单抗对大鼠机械通气所致肺损伤保护作用机制的研究[D];山东大学;2015年
3 林飞;HMGB1/TLR2信号通路在术后认知功能障碍和缺血再灌注肺损伤中的作用及其调控机制[D];广西医科大学;2016年
4 生伟;血红素加氧酶-1对体外循环肺损伤作用及机制研究[D];青岛大学;2016年
5 陈星;SHH通路对小鼠内毒素性肺损伤及早期脏器发育作用机制研究[D];山东大学;2016年
6 胡淑玲;MSC旁分泌VEGF/HGF对ALI大鼠肺微血管内皮通透性和肺损伤修复的作用及机制研究[D];东南大学;2016年
7 李娜;右美托咪定调控miRNA-146a对COPD肺损伤的保护作用及机制[D];南方医科大学;2017年
8 徐金富;携带促血管生成素1基因的间充质干细胞干预脂多糖致炎症性肺损伤的试验研究[D];复旦大学;2007年
9 马兵;活化素受体样激酶5活性抑制在炎性肺损伤发病机制中意义[D];第二军医大学;2007年
10 赵峰;骨髓间充质干细胞在大鼠肺组织内的分化及对肺损伤治疗作用的研究[D];第四军医大学;2006年
相关硕士学位论文 前10条
1 樊磊;SIRT1对烧伤诱导的心肺损伤的保护作用及机制研究[D];第四军医大学;2015年
2 戎琳怡;KGF-2对吸烟引起肺损伤保护性作用的研究[D];复旦大学;2014年
3 静广建;不同浓度七氟醚预处理对大鼠肾脏缺血再灌注致肺损伤的影响[D];滨州医学院;2014年
4 张兴洲;大承气冲剂对腹腔感染致肺损伤炎症介质的影响[D];天津医科大学;2015年
5 易海玲;中性粒细胞的清除在小鼠腹膜炎肺损伤中作用[D];东南大学;2015年
6 刘晨;NAC对乳腺癌化疗后肺损伤的保护作用研究[D];遵义医学院;2016年
7 裴炜炜;氡致肺损伤中NF-κB/TFAM/mtDNA通路的改变[D];苏州大学;2016年
8 胡阳;远程缺血预处理对体外循环大鼠肺损伤的影响及相关机制研究[D];广西医科大学;2016年
9 梁兴思;山姜素通过上调水通道蛋白1减轻胰源性肺损伤的机制研究[D];桂林医学院;2016年
10 田鲲;水通道蛋白1在小鼠脂肪栓塞综合征肺损伤模型中的作用[D];上海交通大学;2015年
,本文编号:2112933
本文链接:https://www.wllwen.com/shoufeilunwen/yxlbs/2112933.html