紫外光处理对纳米化钛表面理化性能及生物学活动影响的机制探究
[Abstract]:Background: dental implant is widely used in clinic because of its ideal restoration effect. However, it takes 3 to 6 months for the artificial implant teeth to be implanted into the bone. During this period, the mastication and language functions of the patients can not be restored in time, and the longer the time of bone bonding is, The higher the risk of failure during external force. At present, it is hoped that the process of bone bonding after implant implantation can be accelerated by titanium surface treatment, and the realization of immediate implantation and early loading has become one of the hotspots in dental implant research. In order to overcome the limitations of traditional micron implants in the application of immediate implants, surface modification of titanium implant with nano-scale modification has been proposed, and nano-scale modification can better simulate the bone tissue environment in vivo. To promote the development of implant-bone bonding. In addition, implant aging is one of the most common clinical problems. It has been proved that the surface energy of the traditional surface modified implants can change with the prolongation of the preservation time, which affects the bone binding process. It has been proved that Ultraviolet UV can effectively improve the surface energy of titanium implants and improve the bone binding efficiency. Theoretically, the effect of UV photocatalysis should be improved with the increase of the specific surface area of the material by using nano-scale modification with higher surface area instead of the traditional micrometer modified implant. However, the effects of UV treatment on the biological and physical and chemical properties of titanium surface, especially the changes of surface elements and the charge state, need to be further explored. Objective: to study the effects of UV light treatment on the surface physicochemical properties and biological activity of nano-modified titanium. [methods] Nanotube morphology (AO group) was prepared on pure titanium surface by anodic oxidation technique. The nanotubes were prepared by UV photocatalytic (AO UV group. The physical and chemical properties of the material surface were analyzed by scanning electron microscope (SEM) (SEM), surface roughness tester, contact angle tester and solid Zeta potentiometer. In vitro protein adsorption test and in vitro cytological test were used to detect the early biological activity of the two groups. [results]: the morphology and surface roughness of titanium nanotubes with 70-100nm diameter were prepared stably on pure titanium surface by anodic oxidation technique. The results showed that the surface morphology and surface roughness of titanium nanotubes before and after UV catalysis were the same. The surface hydrophilicity of titanium nanotubes was improved by UV treatment without obvious difference. The contact angle changed from 51.5 掳to 6.2 掳. The elemental composition of titanium nanotubes before and after UV catalysis was analyzed by XPS. It was found that UV catalysis reduced inorganic and organic contamination on the surface of titanium nanotubes and exposed more Ti3 Ti4 sites. More notable, however, is the change in the peak value of the O element. After UV photocatalysis, the peak value of acidic hydroxyl groups on the surface of titanium nanotubes was decreased and the basic hydroxyl groups increased. After UV treatment, the surface isoelectric point of titanium nanotubes was decreased, and the negative charge carried in body fluid was obviously decreased by measuring the real time potential of the two groups. The results of biological experiments in vitro showed that UV catalysis greatly enhanced the adsorption capacity of protein on the surface of titanium. The amount of adsorption on titanium surface of AO UV group was even higher than that of AO group after incubation for 3 h. UV treatment significantly increased osteoblast adsorption on titanium nanotubes. Early adhesion to the surface, The adhesion rate of osteoblasts on the surface of osteoblasts was increased, the adhesion morphology of the cells was affected, and the remodeling of cytoskeleton and the formation of adhesion plaque were promoted. [conclusion] UV treatment promoted the early biological activities of titanium nanotubes, which was related to the change of surface charge caused by the change of acid, basic and hydroxyl groups on the surface of titanium nanotubes.
【学位授予单位】:南方医科大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:R783.6
【相似文献】
相关期刊论文 前10条
1 汪大林,戴维霞,唐卫忠,安燕,罗远伦;不同温度下钛表面生成的氧化物研究[J];中华口腔医学杂志;2000年03期
2 舒成军;骆小平;;钛表面处理方法对钛-瓷界面结合力和瓷表面色泽的影响[J];国际生物医学工程杂志;2006年05期
3 张祖太;丁宁;任蕾;;钛表面修饰抗菌特性的研究进展[J];北京口腔医学;2012年04期
4 李德华,刘宝林,徐可为;改良喷砂表面处理对钛表面理化性能的影响[J];解放军医学杂志;2001年01期
5 白薇,陈治清,张敏,刘仲阳,王培录,廖小东,郑思孝,孙官清;氨基注入钛表面及其微观分析[J];华西口腔医学杂志;2003年01期
6 王磊;陈建治;;钛表面微弧氧化膜的研究进展[J];中国口腔种植学杂志;2006年01期
7 于晓琳;邓飞龙;宁成云;王聪;刘芹;;新型氨基化纳米多孔钛表面的生物相容性研究[J];口腔医学研究;2012年07期
8 王忠山;秦海燕;唐立辉;董岩;卢帅;杜静;赵铱民;;钛表面贻贝蛋白包被对人真皮成纤维细胞粘附和增殖的影响[J];牙体牙髓牙周病学杂志;2012年12期
9 杨晓喻;李世轶;刘长虹;吴颖;赖春花;杨涛;;两种钛表面成骨细胞附着静态与动态观察[J];广东牙病防治;2013年11期
10 张波,李虎,杨帮成,张兴栋;碱热处理钛表面的理化性能与生物活性的研究[J];中国口腔种植学杂志;2005年02期
相关会议论文 前10条
1 何福明;赵姗姗;刘丽;陈松;王小祥;;纯钛表面快速仿生制备钙磷涂层的研究[A];第四届全国口腔种植学术会议论文集[C];2005年
2 杨邦成;陈继镛;张兴栋;;碱热处理钛表面钙磷沉积研究[A];面向21世纪的科技进步与社会经济发展(下册)[C];1999年
3 王忠山;秦海燕;唐立辉;董岩;卢帅;杜静;赵铱民;;钛表面贻贝蛋白包被在经皮种植体表面处理中的应用[A];第十六次全国环氧树脂应用技术学术交流会暨学会西北地区分会第五次学术交流会暨西安粘接技术协会学术交流会论文集[C];2012年
4 于晓琳;邓飞龙;;纯钛表面氨基化纳米孔的制备及其对骨界面的影响[A];中华口腔医学会第14次全国口腔医学学术会议(2012年会)论文汇编[C];2012年
5 刘慧颖;刘洋;王浪平;王小峰;马国武;;氟离子注入钛表面改性材料的骨细胞相容性和抗菌性能[A];第六届全国口腔种植学术会议论文汇编[C];2009年
6 曹辉亮;刘宣勇;丁传贤;;钛表面银注入纳米化及其抗菌性[A];2009年上海市医用生物材料研讨会论文汇编[C];2009年
7 杨家华;王少安;邓天燕;;细菌污染钛表面对人体单核细胞激活和分泌的影响[A];第四届全国口腔种植学术会议论文集[C];2005年
8 胡江;吕晓卫;闫娟娟;高勃;;激光快速成形制备纯钛表面磷酸钙类陶瓷涂层及其表征[A];第九次全国口腔医学计算机应用学术会议论文汇编[C];2011年
9 杨晓喻;刘长虹;梁星;孙俊;;不同钛表面对大鼠成骨细胞功能和细胞周期的影响[A];第六届全国口腔种植学术会议论文汇编[C];2009年
10 刘丽;王芹;;纯钛表面纳米掺镁羟基磷(厂火)石涂层的构建及评价[A];第八届全国口腔材料学术交流会暨中华口腔医学会口腔材料专业委员会2013年会论文集[C];2013年
相关博士学位论文 前10条
1 乔士冲;银注入SLA钛表面构建多级微纳结构的实验研究[D];上海交通大学;2015年
2 吴靖漪;紫外光处理对纳米化钛表面理化性能及生物学活动影响的机制探究[D];南方医科大学;2017年
3 冯波;表面氧化钛膜、含钙和含磷的钛表面表征与钛生物活性[D];四川大学;2002年
4 冯彦博;仿生活性粗化钛表面的构建及其评价[D];浙江大学;2007年
5 陈练;含纳米硅钛表面促进骨整合及其机理的实验研究[D];苏州大学;2012年
6 王晓静;微弧氧化改性纯钛种植体经皮部位生物学性能的实验研究[D];第四军医大学;2012年
7 徐娟;四级钛表面纳米锌离子注入沉积改性的基础研究[D];吉林大学;2010年
8 刘慧颖;氟离子注入钛表面对骨细胞相容性和抗菌性能的影响[D];中国医科大学;2008年
9 黄怡;大鼠牙髓干细胞在微弧氧化钛表面诱导分化成骨的研究[D];华中科技大学;2012年
10 王丹;融合肽minTBP-1-PRGDN涂层影响钛表面成骨细胞粘附、增殖及分化功能的体外研究[D];华中科技大学;2010年
相关硕士学位论文 前10条
1 周麟;微沟槽钛表面抗菌肽生物涂层的抗菌性能及其对牙龈成纤维细胞生物学行为的影响[D];福建医科大学;2015年
2 谭震;钛表面多级微钠米结构及其磷酸钙涂层制备与表征[D];西南交通大学;2015年
3 闵曦;紫外光催化双层纳米钛表面理化性能及生物活性的研究[D];安徽医科大学;2014年
4 刘春;碱酸热处理制备生物活性钛表面及其生物活性的体外研究[D];安徽医科大学;2016年
5 欧阳孔友;钛表面聚多巴胺功能响应膜的构建及生物相容性研究[D];广东工业大学;2016年
6 邓聪慧;钛表面溶胶纳米网结构的制备及生物学性能研究[D];重庆大学;2016年
7 黄婷;Nd:YAG激光轰击处理纯钛表面对钛—瓷结合强度影响的实验研究[D];西南医科大学;2016年
8 宋岩;低强度脉冲超声对不同钛表面骨髓间充质干细胞生物学行为的影响[D];锦州医科大学;2017年
9 石瑶;微纳米图案化处理对钛表面性能的影响[D];中国矿业大学;2014年
10 林曦;酸蚀后钛表面理化性能研究[D];南方医科大学;2014年
,本文编号:2160290
本文链接:https://www.wllwen.com/shoufeilunwen/yxlbs/2160290.html