TP53及KRAS突变对晚期肺腺癌患者抗PD-1免疫治疗潜在的预测价值
[Abstract]:Background Immunotherapy of programmed death factor 1 (PD-1) and its ligand 1 (PD-L1) has made rapid progress in non-small cell lung cancer (NSCLC) in recent years. Although the efficacy of immunotherapy is remarkable, only a small number of patients can benefit from it. How to select effective biomarkers to select potential beneficiaries is the main problem. It is gratifying to note that recent studies have found that the defect of mismatch repair of tumor mutation load, the number of tumor infiltrating lymphocytes and the expression of PD-L1 in tumor / immune cells can effectively predict the efficacy of PD-1 inhibitors. Moreover, these factors also have a mutual influence on each other. These findings raise another question: is there any other biomarker that can affect two or more of these predictive factors at the same time to achieve greater predictive value? Methods by using the common database (TCGA,GEO and broad) as the exploration set and the second generation sequencing data of our center as the validation set, we systematically analyzed the genome, transcriptome and proteome. The relationship between the efficacy of clinical immunotherapy and gene mutation was analyzed from the results of previous clinical trials (MSKCC) and (GLCI) immunotherapy data of our center. Immunohistochemistry and sanger sequencing were used for the detection of related molecules. The related signal pathways were analyzed by gene enrichment method (GSEA). Results in this study, the correlation between common gene mutation (TP53/KRAS/EGFR/STK11) and immunological checkpoint protein (PD-L1) and tumor infiltrating lymphocytes in tumor immune microenvironment was analyzed by using TCGA and GEO database. We found that TP53 mutation and TP53/KRAS double mutation promoted the expression of PD-L1, tumor lymphocyte infiltration and activation of effector T cell -IFN- 纬 signaling pathway in lung adenocarcinoma. The effect of the above mutation on tumor immune microenvironment was preliminarily established. And then we analyze the mutation load and the mutation spectrum of the tumor. From the exploration set (TGCA and Broad) of the common database to the verification set (GLCI) of the second generation sequencing of our center, it was preliminarily proved that the mutations of TP53 and KRAS were correlated with the increase of mutation load and the frequency of base transversion in lung adenocarcinoma. At the same time, gene enrichment analysis showed that TP53 and KRAS mutations increased the risk of tumor gene mutation by interfering with the process of tumor cell cycle regulation, such as DNA replication and DNA damage repair. In view of the above discovery of molecular mechanism, it is suggested that TP53 and KRAS mutations may be predictive markers of immunotherapy for lung adenocarcinoma. In order to prove the above theoretical inference, We first demonstrated that TP53 and KRAS mutations, especially in patients with double TP53/KRAS mutations, were more effective than wild-type patients by using the previously published information of patients with immunotherapy clinical trials in the public database, and the results showed that TP53 and KRAS mutations, especially in patients with double TP53/KRAS mutations, were significantly better than those in wild type patients. Furthermore, we analyzed the clinical information of (GLCI) immunotherapy patients in the real world. The results also indicated that TP53 and KRAS mutation patients had better immunotherapy effect. Conclusion our study demonstrated for the first time the effects of TP53 and KRAS mutations on PD-L1 expression, tumor lymphocyte infiltration and tumor mutation load in lung adenocarcinoma. Furthermore, the predictive value of TP53 and KRAS mutations, especially TP53/KRAS double mutations, for the increased sensitivity of PD-1 monoclonal antibody to immunotherapy of lung adenocarcinoma was preliminarily established from clinical immunotherapy. These findings provide a new idea for screening effective biomarkers for immunotherapy in the future.
【学位授予单位】:南方医科大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:R734.2
【相似文献】
相关期刊论文 前10条
1 马中骥;;肺癌的免疫治疗[J];国外医学(免疫学分册);1979年06期
2 陈祖林;病毒介导的免疫治疗癌症进展[J];免疫学杂志;2001年S1期
3 杨冬;慢性粒细胞白血病的免疫治疗[J];国外医学(内科学分册);2001年06期
4 李永奇,李源;变应性真菌性鼻窦炎停止免疫治疗后的临床效果观察[J];国外医学.耳鼻咽喉科学分册;2001年02期
5 王俊伟;;肿瘤过继性免疫治疗的研究进展[J];科技信息;2011年12期
6 曾小澜;王燕云;马克蓉;;36例肺癌的辅助免疫治疗[J];山西医药杂志;1981年02期
7 徐立春,吴明生,许祥裕,丁树标,高继万;人恶黑肿瘤浸润淋巴细胞免疫治疗的实验研究[J];中国免疫学杂志;1996年01期
8 陈祖林;病毒介导的免疫治疗癌症进展[J];华西医学;2002年01期
9 赵初娴,王椿;慢性粒细胞白血病的免疫治疗[J];医师进修杂志;2003年05期
10 童有兵;安徽省立儿童医院呼吸道疾病免疫治疗中心挂牌[J];安徽卫生职业技术学院学报;2005年04期
相关会议论文 前10条
1 王冠军;;肺癌免疫治疗的进展和挑战[A];中国肿瘤内科进展 中国肿瘤医师教育(2014)[C];2014年
2 顾瑞金;;免疫治疗的今昔[A];中华医学会第二次全国变态反应学术会议论文汇编[C];2004年
3 张芳;原丽;;肾癌根治术后应用免疫治疗的观察与护理[A];河南省肿瘤护理职业安全与临床护理新进展研讨会资料汇编[C];2007年
4 卢绍平;余萍;魏阳;蒋文军;唐小兰;;CIK细胞过继性免疫治疗恶性肿瘤15例临床初步观察[A];第九届全国肿瘤生物治疗学术会议论文集[C];2006年
5 钟润波;韩宝惠;;免疫治疗:肺癌如何应用?[A];中国肿瘤内科进展 中国肿瘤医师教育(2014)[C];2014年
6 于保法;;肿瘤缓释库治疗——开创肿瘤化疗免疫治疗的新时代[A];2011年中华名中医论坛暨发挥中西医优势防治肿瘤高峰论坛论文集[C];2011年
7 桂铭桧;张静;;肾癌术后使用免疫治疗的不良反应与护理对策[A];第十六届全国泌尿外科学术会议论文集[C];2009年
8 刘茵;Hong-Wei Wu;Michael A. Sheard;Richard Sposto;Robert C. Seeger;Laurence J.N. Cooper;Dean A. Lee;;儿童神经母细胞瘤自然杀伤细胞扩增和激活的免疫治疗研究[A];2012年江浙沪儿科学术年会暨浙江省医学会儿科学分会学术年会、儿内科疾病诊治新进展国家级学习班论文汇编[C];2012年
9 杨云山;马胜林;曹雪涛;;Exosomes与免疫治疗[A];2007医学前沿论坛暨第十届全国肿瘤药理与化疗学术会议论文集[C];2007年
10 袁玫;宋舸;汤宇;崔雪梅;睢翔;赵斌;卢世璧;;混合热休克蛋白与白介素12、环磷酰胺联合免疫强化治疗小鼠肉瘤[A];第九届全国肿瘤生物治疗学术会议论文集[C];2006年
相关重要报纸文章 前10条
1 王建新 江苏健安生物科技公司的创始人和总经理;现代癌症免疫治疗战争[N];医药经济报;2014年
2 海军总医院放射肿瘤科主任 康静波;免疫治疗并非人人适合[N];健康报;2013年
3 王建新 江苏建安生物科技公司创始人和总经理;免疫治疗60年:两代人的承诺[N];医药经济报;2014年
4 董笑非;默克雪兰诺成立免疫治疗学院[N];中国医药报;2011年
5 本报记者 王雪敏;特异性免疫治疗AR[N];医药经济报;2010年
6 记者 李宏策;免疫治疗可激活嗜中性粒细胞治疗癌症[N];科技日报;2013年
7 Ben Hirschler 编译 储e,
本文编号:2204883
本文链接:https://www.wllwen.com/shoufeilunwen/yxlbs/2204883.html