纳米靶向递药系统AS1411-PLGA-DOX的构建及其对脑胶质瘤的治疗作用与机制研究
[Abstract]:Background: malignant tumors have brought serious harm to human health and social development. Because of the aggressive growth of the tumor, the operation is difficult to completely eradicate, combined with radiotherapy, chemotherapy has great toxic side effects, so it is urgent to find the best method of comprehensive treatment of tumor. With the cross-fusion of materials science, biomedicine and nano-science, nano-targeted preparations have attracted more and more attention. Nano-targeted drug delivery system is a hot research topic at present. It has the characteristics of targeting, improving drug stability and slow release. Polylactic acid-glycolic acid (PLGA) copolymers have been widely used in drug delivery systems due to their good biocompatibility, low toxicity and degradability. Doxorubicin hydrochloride (doxorubicin), also known as doxorubicin, has a significant inhibitory effect on many kinds of tumors, but its adverse reactions, such as bone marrow suppression and heart injury, have become the bottleneck of DOX in the treatment of tumors. Nucleic acid aptamer (AS1411) has many advantages, such as specific target binding ability, easy penetration of tumor tissue, easy modification in vitro, and specific binding to nucleolar protein (C23) in order to play its important role in anti-tumor. C23 is a apoptosis-related protein. P38 mitogen-activated protein kinase (p38MAPK) plays an important role in the process of cell apoptosis. Objective: in this study, DOX was used as an anti-glioma drug and PLGA as a nano-carrier, AS1411 was coupled to PLGA nanospheres in order to form a nano-targeted delivery drug system (AS1411-PLGA-DOX,) to play its specific role in targeting glioma. The molecular mechanism of its anti-glioma action was further clarified. Methods: AS1411-PLGA-DOX was prepared by solvent volatilization and carbodiimide two-step condensation reaction, and characterized. The effects of AS1411-PLGA-DOX on glioma were confirmed in vivo and in vitro. Based on the molecular mechanism of tumor apoptosis, the intrinsic molecular mechanism of AS1411-PLGA-DOX antiglioma was studied. Results: 1. AS1411-PLGA-DOX was spherical, the size (245 卤42.6nm) was more regular and the surface was smooth, the polydispersity coefficient was 0.212 卤0.023, the potential was -36.2 卤1.8mVN LC1.72 卤0.06CV% was 88.1 卤4.7%, the in vitro release rate was 47.7 卤3.9.% (pH=7.4) 57.0 卤4.6% (pH=5), the results showed the characteristic of pH responsive release. The hemolysis rate was 0.244% to show good biological description. At the same time, the fluorescence intensity of AS1411-PLGA-DOX was significantly higher than that of PLGA-DOX,. The results of cell quantitative localization showed that AS1411-PLGA-DOX was targeted to some extent. In vitro experiments showed that AS1411-PLGA-DOX inhibited U87 cell growth in a concentration-dependent manner and could block the cells in G _ 2 / MN _ S phase. The mechanism of inhibition might be related to the activation of p38MAPK channel by AS1411-PLGA-DOX, upregulation of p38 expression and down-regulation of the expression of C23 ~ (23) Bcl-2O _ (Bcl-XL) in U87 cells. In vivo experiments showed that AS1411-PLGA-DOX could inhibit the tumor growth and prolong the survival time of nude mice bearing subcutaneous tumor, and its further molecular biological mechanism was consistent with the cell experiment. Conclusion: AS1411-PLGA-DOX, with targeting effect has been successfully constructed in this study. The results in vitro and in vivo indicate that AS1411-PLGA-DOX is a promising nanometer preparation for the inhibition of glioma. The mechanism may activate the p38 apoptosis signal pathway, resulting in the up-regulation of p38 protein expression and the down-regulation of C23Bcl-2Bcl-XL protein.
【学位授予单位】:南方医科大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:R943;R96
【相似文献】
相关期刊论文 前10条
1 黄莹莹;;Biodegradable Polylactide-co-glycolide (PLGA) Thin Films Prepared by Electrospray and Pressurized Spray Deposition[J];Journal of Wuhan University of Technology-Materials Science;2005年S1期
2 王志清;刘卫;徐辉碧;杨祥良;;载三氧化二砷的PEG-PLGA隐性纳米粒的制备及体外研究(英文)[J];Chinese Journal of Chemical Engineering;2007年06期
3 ;Effect of Excipients on Stability and Structure of rhCuZn-SOD Encapsulated in PLGA Microspheres[J];Chemical Research in Chinese Universities;2004年03期
4 郭晓东;;Surface Modification of Biomimetic PLGA-(ASP-PEG) Matrix with RGD-Containing Peptide:a New Non-Viral Vector for Gene Transfer and Tissue Engineering[J];Journal of Wuhan University of Technology(Materials Science Edition);2006年03期
5 陈剑;樊新;周忠诚;阮建明;;PLGA材料仿生改性的最新进展[J];粉末冶金材料科学与工程;2008年06期
6 ;Preparation and mineralization of PLGA/Gt electrospun fiber mats[J];Chinese Science Bulletin;2009年08期
7 李双燕;;PLGA组织工程支架材料的研究与展望[J];国外丝绸;2009年02期
8 郝杰;郑启新;;Biomineralization of the Surface of PLGA-(ASP-PEG) Modified with the K_(16) and RGD-containing Peptide[J];Journal of Wuhan University of Technology(Materials Science Edition);2009年05期
9 ;Preparation of Tolterodine Metabolite Loaded Biodegradable PLGA Microspheres[J];Chemical Research in Chinese Universities;2010年01期
10 ;Comparison of BSA Release Behavior from Electrospun PLGA and PLGA/Chitosan Membranes[J];Chemical Research in Chinese Universities;2011年04期
相关会议论文 前10条
1 郑强;潘志军;薛德挺;李杭;李建兵;;纳米PLGA/HA复合物和骨髓基质干细胞在软骨修复中的应用[A];2009年浙江省骨科学学术年会论文汇编[C];2009年
2 王汉杰;苏文雅;廖振宇;王生;常津;;PLGA/Liposome核壳纳米粒子的制备[A];天津市生物医学工程学会第30次学术年会暨生物医学工程前沿科学研讨会论文集[C];2010年
3 王光林;吴辉;;联合静电纺丝法和转筒接收法制备PLGA—胶原—丝素纳米神经导管[A];第六届西部骨科论坛暨贵州省骨科年会论文汇编[C];2010年
4 赵洁;全大萍;廖凯荣;伍青;;含不同侧氨基密度的ASP-PEG-PLGA的合成与表征[A];中国生物医学工程学会第六次会员代表大会暨学术会议论文摘要汇编[C];2004年
5 黄艳霞;任天斌;张丽红;吕凯歌;蒋欣泉;潘可风;任杰;;PLGA/NHA-RGD复合材料的制备及性能研究[A];2006年上海市医用生物材料研讨会论文汇编[C];2006年
6 ;Synthesis of PLGA Labeled with ~(125)I[A];2006年上海市医用生物材料研讨会论文汇编[C];2006年
7 李艳辉;崔媛;张慧敏;关秀文;;利用等离子体技术在PLGA表面固定胶原的研究[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
8 何树;毕龙;刘建;扈刚;孟国林;董鑫;郝赋;赵轶男;;新型PLGA/HMS-HA复合微球载体支架对兔骨髓间充质干细胞生物学行为的影响[A];中华医学会第七次全国骨质疏松和骨矿盐疾病学术会议论文汇编[C];2013年
9 ;Preparation of PLGA Ultrasound Microbubble Loaded Hematoporphyrin and optimization of formulation[A];中华医学会第十次全国超声医学学术会议论文汇编[C];2009年
10 李志宏;武继民;汪鹏飞;陈学忠;黄姝杰;关静;张西正;;BMP/PLGA缓释微球的制备与体外释放性能[A];第七届中国功能材料及其应用学术会议论文集(第4分册)[C];2010年
相关重要报纸文章 前3条
1 记者 白毅;合成温敏型PLGA-PEG-PLGA嵌段共聚物[N];中国医药报;2006年
2 尹东锋 钟延强;聚合物 药物 制备工艺 附加剂[N];中国医药报;2006年
3 李博;“人造红细胞”[N];大众卫生报;2009年
相关博士学位论文 前10条
1 李玉华;载阿伦磷酸钠PLGA微球的磷酸钙骨水泥复合组织工程骨修复兔股骨髁骨缺损的实验研究[D];山东大学;2015年
2 周璇;RGD靶向微泡与载药微球在肝脏创伤渗血诊断和治疗中的研究[D];中国人民解放军医学院;2015年
3 陶春;可注射镶嵌载生长因子壳聚糖微球的PLGA多孔复合微球支架的研究[D];第二军医大学;2015年
4 鲍文;靶向纳米载药系统DNR-PLGA-PLL-PEG-Tf治疗恶性血液病的体内、体外研究[D];东南大学;2015年
5 王晨晖;装载蛋白药物的PCADK/PLGA混合微球研究及在重组人生长激素中的应用[D];吉林大学;2016年
6 卢明子;载血红蛋白PEG-PLGA纳米粒子的构建、生物学作用及其靶向性能的研究[D];中国人民解放军军事医学科学院;2016年
7 张皓轩;载辛伐他汀PLGA微球/磷酸钙组织工程骨的生物相容性和成骨活性的研究[D];山东大学;2016年
8 李青;新型高效靶向ROS响应的载药纳米粒子系统在口腔鳞癌治疗中的研究[D];山东大学;2016年
9 齐峰;粒径均一的PLGA颗粒制备及在长效缓释体系和Pickering乳液中的应用[D];中国科学院研究生院(过程工程研究所);2015年
10 刘苒;转铁蛋白修饰的新型多聚物载药纳米粒的研制及靶向逆转白血病多药耐药的体外研究[D];东南大学;2015年
相关硕士学位论文 前10条
1 阳刚;复合肌腱修复材料—载细胞用防粘连性隔离/支架型PLGA膜的体外研制[D];中南大学;2010年
2 唐冠男;微流控技术原位合成多形貌PLGA/TiO_2复粒子及其体外药物释放的研究[D];华南理工大学;2015年
3 李文秀;形貌可控的PLGA/PCL复合粒子的制备及体外降解性能的基础研究[D];华南理工大学;2015年
4 黄卓颖;重组人表皮生长因子PLGA纳米粒经皮治疗大鼠糖尿病溃疡的作用研究[D];福建中医药大学;2015年
5 闻继杰;含胺基修饰beta-环糊精的可降解两亲性聚酯的合成及其对蛋白质和抗癌药物的控制释放[D];天津理工大学;2015年
6 王翠伟;基于点击化学制备PCL/PEG两亲性共网络聚合物以及不同支臂PLGA作为疫苗载体的初步研究[D];北京协和医学院;2015年
7 王共喜;PLA/AT纳米复合材料的制备与性能及PLGA纤维的表面改性[D];复旦大学;2014年
8 刘青;植入体材料与PLGA载药微球的复合研究[D];西南交通大学;2015年
9 张科技;蚕丝-PLGA支架的生物相容性及力学性能的研究[D];浙江省医学科学院;2015年
10 黄晓君;关节腔注射用青藤碱-PLGA微球—温敏凝胶的制备及评价[D];广东药学院;2015年
,本文编号:2243323
本文链接:https://www.wllwen.com/shoufeilunwen/yxlbs/2243323.html