抵抗素通过抑制细胞死亡和上调ABC转运蛋白的表达诱导多发性骨髓瘤多药耐药
[Abstract]:EXPERIMENTAL OBJECTIVES: In recent years, great progress has been made in the treatment of multiple myeloma due to the development of new drugs, but multiple myeloma is still an incurable hematological tumor due to recurrence and drug resistance. Cells participate in multidrug resistance of myeloma by secreting adipocytokines, but it is not clear which adipocytokines are involved in this process and the specific mechanism. This study explores the role of novel adipocytokine resistin in multidrug resistance of multiple myeloma and its related molecular mechanisms. Experimental methods: 1. Marfan, boron Tezomib or Carfezomib induced apoptosis of bone marrow CD138 + plasma cells from multiple myeloma cell lines and patients with myeloma. At the same time, different concentrations of resistin were added. Apoptosis was detected by Annexin V-FITC/PI double-labeled flow cytometry. 2. Apoptosis-related proteins and important myeloma cell survival signal pathway-related proteins were detected by Western blot. Specific inhibitors were used to block the signaling pathway and Annexin V-FITC/PI double-labeled flow cytometry was used to compare the changes of apoptosis rate. 3. Firstly, the effect of resistin on the function of ABC transporter protein was detected by flow cytometry. Secondly, the expression of ABCB1, ABCB3, ABCC1, ABCC3, ABCC4, ABCC5, ABCG2 was detected by real-time quantitative PCR. The expression of ABCG2 and ABC5 was inhibited by small interfering RNA (si RNA) technique, and the effect of ABCG2 and ABC5 Si RNA on resistance-induced multidrug resistance in multiple myeloma cell lines was observed. 4. Methylation-specific PCR (MS-PCR) was used to detect the expression of ABCG2 and ABC5 Si RNA. The effects of antibiotics on methylation of ABCG2 and ABC5 genes were detected by real-time quantitative PCR and Western blot. 5. Severe combined immune deficiency (SCID) mice were established by multiple myeloma cell line ARP-1. Twenty mice were randomly divided into four groups and treated with melphalan and/or resistin after 3 weeks of myeloma formation. The M protein content in plasma was detected by ELISA, CD138 + cells in bone marrow were detected by flow cytometry, and Annexin V-FITC/PI flow cytometry and DNA fragmentation in situ end labeling (TUNEL) were used. The results showed that resistin significantly inhibited the apoptosis of MAF-induced multiple myeloma cell lines ARP-1, MM.1S and U266 in a concentration-dependent manner. At the same time, resistin also inhibited the apoptosis of ARP-1, MM.1S and RPMI8226 cells induced by bortezomib and carfezomib. The apoptosis-related proteins cleaved caspase-9, cleaved caspase-3, cleaved PARP and Bax were significantly decreased in ARP-1 and MM.1S cells compared with those in melphalan treatment group, while the inhibitor of apoptosis proteins Bcl-2 and Bcl-Xl were significantly decreased in resistin and melphalan treatment groups. Furthermore, we found that resistin significantly increased the phosphorylation levels of I kappa Ba, Akt, and ERK1/2, and that NF-kappa B and PI3K inhibitors significantly decreased the anti-apoptotic protective effect of resistin on myeloma cell lines. ABC5 transporters were significantly increased in multiple myeloma cell lines. After interfering with ABCG2 and ABC5 gene expression, resistin had no protective effect on myeloma cell apoptosis induced by melphalan, bortezomib and carfezomib. In vivo, we used the M protein content in plasma to reflect the tumor load in mice. We found that the M protein content in plasma of the mice treated with resistin and melphalan was significantly higher than that of the mice treated with melphalan, and the CD138 + cells in bone marrow were significantly increased. Conclusion: 1. Resistin can inhibit the apoptosis of myeloma cells induced by various chemotherapeutics. 2. Resistin exerts its protective effect on myeloma cells by activating the anti-apoptosis signaling pathway NF-kappa B and PI3K/Akt. Resistin can reduce the expression of methyltransferase DNMT1 and DNMT3a, increase the expression of ABC transporter protein and drug efflux function, so as to play its anti-apoptosis role. 4. In vivo experiments further confirmed the role of resistin in promoting multidrug resistance in multiple myeloma.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:R733.3
【相似文献】
相关期刊论文 前10条
1 罗梅;抵抗素的研究进展[J];华西医学;2003年01期
2 郭炫,范桂香,施秉银,王刚,王林川,罗玉珍,苗艾莲;2型糖尿病患者抵抗素相关因素分析及回归方程的建立[J];检验医学;2005年05期
3 池海谊;冯凭;;抵抗素在肥胖与2型糖尿病间作用的研究现状[J];内蒙古医学杂志;2006年03期
4 李志臻;黎锋;严励;李芳萍;李焱;程桦;傅祖植;;抵抗素诱导脐静脉内皮细胞功能异常[J];中山大学学报(医学科学版);2006年03期
5 成兴波;范庆涛;;2型糖尿病合并高血压患者抵抗素与动脉粥样硬化的相关性研究[J];标记免疫分析与临床;2006年04期
6 陈亚宁;抵抗素的结构和生理作用的研究情况[J];陕西医学杂志;2002年06期
7 周少玲;抵抗素的研究现状[J];国外医学(内分泌学分册);2003年03期
8 周咏明,张浩;抵抗素基因表达的调控及机制[J];国外医学.内分泌学分册;2003年05期
9 李芳萍;抵抗素的研究进展[J];国外医学(内科学分册);2003年03期
10 戴巧定;抵抗素——肥胖和2型糖尿病的共同发病基础[J];国外医学(内科学分册);2003年07期
相关会议论文 前10条
1 沈永明;管卫;;抵抗素与临床疾病关系的研究进展[A];中华医学会第七次全国中青年检验医学学术会议论文汇编[C];2012年
2 毛红仙;汪大望;郑景晨;胡素银;吴俊琪;;血浆抵抗素与2型糖尿病的相关性研究[A];2005年浙江省内分泌学术会议论文汇编[C];2005年
3 盛春华;杜珍武;卜丽莎;高申;杨绍娟;张桂珍;;人抵抗素对脂肪细胞增殖与分化作用的定量研究[A];第十二届中国体视学与图像分析学术会议论文集[C];2008年
4 赵明辉;张春明;王彦;王德芝;韩佩珍;;抵抗素合成肽抗体的制备及其初步应用[A];第三届(2005年)同位素技术与应用学术研讨会会议文集[C];2005年
5 李燕;汪翼;李倩;;抵抗素对幼年大鼠血管内皮分泌功能的影响[A];中华医学会第十四次全国儿科学术会议论文汇编[C];2006年
6 毛红仙;汪大望;胡素银;郑景晨;吴俊琪;徐瑞龙;;瘦素与抵抗素及2型糖尿病的相关性分析[A];2005年浙江省内分泌学术会议论文汇编[C];2005年
7 盛春华;杜珍武;卜丽莎;高中;杨绍娟;张桂珍;;人抵抗素对肌细胞胰岛素敏感性影响的定量研究[A];第十二届中国体视学与图像分析学术会议论文集[C];2008年
8 姜长涛;李茵;郭玲;张振民;徐国恒;汪南平;朱毅;王宪;;同型半胱氨酸上调脂肪组织抵抗素的表达及其机制[A];第六届海峡两岸心血管科学研讨会论文摘要集[C];2007年
9 徐永庆;黄友敏;;抵抗素和血栓调节蛋白与急性脑梗死的关系研究[A];中华医学会第七次全国检验医学学术会议资料汇编[C];2008年
10 魏爱生;麦伟华;叶建红;刘天;王甫能;陈苹;郎江明;;2型糖尿病痰(湿)热互结证与抵抗素的相关性研究[A];内分泌代谢病中西医结合研究——临床与基础[C];2010年
相关重要报纸文章 前2条
1 张涛;糖尿病研究捷报频传[N];医药经济报;2002年
2 王艳红;美发现与糖尿病和肥胖症有关的蛋白质[N];中国高新技术产业导报;2001年
相关博士学位论文 前10条
1 文凤云;MiRNA调控抵抗素诱导的胰岛素抵抗及脂肪异位沉积作用机制研究[D];华中农业大学;2014年
2 庞佳楠;抵抗素通过抑制细胞死亡和上调ABC转运蛋白的表达诱导多发性骨髓瘤多药耐药[D];吉林大学;2017年
3 刘振宇;抵抗素通过诱导细胞自噬使人类乳腺癌细胞抵抗阿霉素所致的细胞凋亡[D];吉林大学;2017年
4 盛春华;人抵抗素体外基因转染对葡萄糖摄取的影响及其机制[D];吉林大学;2008年
5 张凌云;2型糖尿病患者抵抗素基因多态性与非酒精性脂肪肝的关系[D];山东大学;2012年
6 李燕;抵抗素对血管内皮功能的作用及不同干预方法保护内皮功能的实验研究[D];山东大学;2008年
7 徐克群;抵抗素在急性胰腺炎发病机制中的作用及罗格列酮防治作用的研究[D];苏州大学;2009年
8 胡文兰;抵抗素与炎症及动脉粥样硬化[D];中国协和医科大学;2007年
9 余安;抵抗素对肝细胞SIRT1功能调控研究[D];华中农业大学;2013年
10 金正贤;抵抗素基因转染对转录因子Sp1及PPARγ mRNA表达影响的体外研究[D];吉林大学;2008年
相关硕士学位论文 前10条
1 蔡禹希;抵抗素调控血管内皮细胞对葡萄糖和胰岛素转运的研究[D];华中农业大学;2015年
2 刘一炫;抵抗素对自发性高血压大鼠肥厚心肌腺苷酸活化蛋白激酶信号通路的影响[D];南方医科大学;2015年
3 何文慧;脂联素、Apelin、抵抗素在子痫前期发病中的作用及相关性分析[D];河北医科大学;2014年
4 张娜;抵抗素通过诱导内质网应激损伤胰岛素信号通路并促进内皮细胞凋亡[D];辽宁医学院;2015年
5 霍晴;脂联素、抵抗素和Apelin在脂肪变肝细胞中的表达及意义[D];重庆医科大学;2015年
6 蒋韫;抵抗素诱导小鼠高血压及其分子机理的研究[D];华中农业大学;2013年
7 孙鹏飞;抵抗素样分子β在动脉粥样硬化斑块稳定性中的作用[D];山东大学;2016年
8 李强;抵抗素调控血管内皮细胞通透性的研究[D];华中农业大学;2013年
9 范国辉;抵抗素基因rs1862513位点不同基因型下血浆抵抗素水平变化与同期体重、腰围变化间的关系研究[D];北京协和医学院;2016年
10 陈成;血清Salusins水平及抵抗素基因多态性与睡眠呼吸暂停相关性高血压的临床研究[D];昆明医科大学;2016年
,本文编号:2248005
本文链接:https://www.wllwen.com/shoufeilunwen/yxlbs/2248005.html