复合益生菌对大菱鲆(Scophthalmus maximus)生长、免疫等指标的影响
本文选题:复合益生菌 + 大菱鲆 ; 参考:《大连海洋大学》2017年硕士论文
【摘要】:本研究通过在饲料中添加复合益生菌,测定其对大菱鲆生长性能、肠道消化酶活性、非特异性免疫等指标的影响,为在大菱鲆的饲料中添加复合益生菌的可行性提供理论基础。选用体重为20.04±0.23 g的大菱鲆幼鱼180尾,随机分为三组,每组三个平行,分别为T0,T1,T2,复合益生菌的添加量分别是饲料重量的0%,1%,5%。60天的饲养试验结束后,结果表明:鱼体的终末体重、特定生长率、增重率随着复合益生菌添加量的增加而明显增加,且在T2效果更为明显(P0.05);随着复合益生菌的添加量增加饲料系数明显降低,且T2下降更为明显(P0.05);添加复合益生菌的处理组T1和T2中鱼体的肥满度和全鱼及背部肌肉的粗蛋白较T0有明显的增加(P0.05),背部肌肉的粗灰分在T2中有所减少(P0.05),而鱼体肝体比、肠体比、脏体比,全鱼及背部肌肉的粗脂肪,全鱼的粗灰分、鱼体血液部分生理生化指标并没有显著性的差异(P0.05)。添加复合益生菌的处理组T1和T2中鱼体肠道消化酶活性有增加的趋势,且T1的淀粉酶活性、T2的蛋白酶活性、T1和T2的脂肪酶活性有显著增加(P0.05)。随着复合益生菌的梯度增加,厚壁菌门在T2中的含量要高于其他组(P0.05),酸酐菌门的含量不断增加,且在T2中最大(P0.05),T2的ACE指数较T0有明显增加(P0.05),而T2的Shannon指数要明显高于其他组(P0.05),其他指数没有显著性差异(P0.05)。对肠道组织学观察发现随着复合益生菌添加量的增加,肠道绒毛数量、肠壁厚度、每100μm杯状细胞数有明显的增加,且T2的肠道绒毛数量、每100μm杯状细胞数,T1和T2的肠壁厚度增加更为明显(P0.05)。对大菱鲆的部分非特异性免疫指标及相关基因的表达量进行检测,结果为:随着复合益生菌添加量的增加血清中ACP、CAT、SOD的活性有明显增加的趋势,且T2的ACP的活性,T1和T2的CAT、SOD的活性有显著性的增加(P0.05);肝脏中ACP、AKP、CAT、SOD、LZM的活性随着复合益生菌添加量的变化而变化,且T1和T2的ACP、AKP的活性T2的CAT、SOD、LZM的活性有显著性的增加(P0.05);随着复合益生菌添加量的增加,肝脏中与SOD、LZM活性相关的基因表达量也不断增加,且在T2中达到最大(P0.05)。综上,饲料中添加复合益生菌能够提高大菱鲆的生长性能、提高消化酶活性、改善肠道菌群和部分非特异性免疫。
[Abstract]:In this study, the effects of compound probiotics on the growth performance, intestinal digestive enzyme activity and non-specific immunity of turbot were determined, which provided a theoretical basis for the feasibility of adding compound probiotics to the feed of turbot. 180 juvenile turbot fishes weighing 20.04 卤0.23 g were selected and randomly divided into three groups, each group having three parallel groups, namely, T0, T1, T2, and the amount of compound probiotics was the feed weight of 0x1 / 50.60 days. The results showed that the final body weight of the fish was the end weight of the fish. The specific growth rate, weight gain rate increased obviously with the increase of compound probiotics addition, and the effect was more obvious in T2, and the feed coefficient decreased obviously with the increase of compound probiotics addition. Moreover, the decrease of T2 was more obvious than that of P0.05.The fat fullness of fish and the crude protein of whole fish and back muscle in treatment group T1 and T2 were significantly higher than that of T0, and the crude ash content of back muscle was decreased in T2, while the ratio of liver to body of fish was decreased. There was no significant difference in intestinal body ratio, visceral body ratio, crude fat of whole fish and back muscle, crude ash content of whole fish and some physiological and biochemical indexes of fish body blood. The digestive enzyme activity of digestive tract increased in T1 and T2 groups, and the activity of amylase in T1 and lipase activity in T2 increased significantly in T1 and T2 groups. With the increase of the gradient of compound probiotics, the content of phylum thuringiensis in T2 was higher than that in other groups, and the content of acid-anhydride phylum was increasing. The ACE index of T _ 2 was significantly higher than that of T _ 0, while the Shannon index of T _ 2 was significantly higher than that of other groups. There was no significant difference in other indexes. With the increase of compound probiotics, the number of intestinal villi, the thickness of intestinal wall, the number of goblet cells per 100 渭 m, and the number of intestinal villi in T2 were observed. The thickness of intestinal wall in T1 and T2 cells per 100 渭 m goblet cells increased significantly (P 0.05). Some nonspecific immune indexes and the expression of related genes in turbot were detected. The results showed that the activity of ACP-CAT SOD in serum increased significantly with the increase of the amount of compound probiotics. The activity of ACP in T _ 2 and T _ 2 increased significantly (P 0.05), and the activity of ACP in liver changed with the addition of compound probiotics. Moreover, the activity of ACPN AKP in T1 and T2 was significantly increased with the addition of compound probiotics, and the expression of genes related to SOD LZM activity in liver was also increased, and reached the maximum P0.05 in T2. In conclusion, the addition of compound probiotics in feed can improve the growth performance, digestive enzyme activity, intestinal flora and partial non-specific immunity of turbot.
【学位授予单位】:大连海洋大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S965.399
【参考文献】
相关期刊论文 前10条
1 胡亚军;李昭林;田芊芊;潘化祥;胡毅;;饲料中添加复合益生菌对黄鳝生长、消化酶活性、部分血清生理生化指标以及体成分的影响[J];中国饲料;2016年17期
2 张盛静;赵小金;宋晓玲;王春迪;刘文亮;黄P";;饲料添加益生菌对凡纳滨对虾肠道菌群、Toll受体及溶菌酶基因表达及抗感染的影响[J];中国水产科学;2016年04期
3 张雯;钟雷;李南充;方程;吉红;任同军;;微生态制剂对池养建鲤体成分、血清指标、消化酶活性以及肠道菌群组成的影响[J];水产科学;2015年12期
4 何伟聪;董晓慧;谭北平;杨奇慧;迟淑艳;刘泓宇;章双;;益生菌对军曹鱼幼鱼生长性能、消化酶和免疫酶活性的影响[J];动物营养学报;2015年12期
5 桂琳;王晓清;康银;曾丹;刘庄鹏;;一种复合益生菌对草鱼生长和抗氧化功能的影响[J];淡水渔业;2015年05期
6 张盛静;宋晓玲;赵小金;黄P";;饲料中添加益生菌对凡纳滨对虾抗感染和5种免疫基因表达的影响[J];水产学报;2015年06期
7 刘振兴;周结珊;马艳平;郝乐;马江耀;梁志凌;柯浩;;益生菌和有机硒对日本鳗鲡生长性能·抗氧化水平及溶菌酶活力的影响[J];安徽农业科学;2015年18期
8 李小梅;杨丽冬;张家学;舒琥;张海发;;一种复合益生菌对斜带石斑鱼生长及免疫特性影响的研究[J];饲料工业;2015年02期
9 施永海;张根玉;张海明;刘永士;严银龙;谢永德;陆根海;徐嘉波;刘建忠;;配合饲料和活饵料对刀鲚幼鱼生长、存活和消化酶、非特异性免疫酶、代谢酶及抗氧化酶活性的影响[J];水产学报;2014年12期
10 郑艺;张家超;郭壮;张和平;;基于高通量测序技术分析肠道菌群及其影响因素的研究进展[J];中国食品学报;2014年11期
相关硕士学位论文 前6条
1 潘金露;饲料中壳寡糖和褐藻酸寡糖对大菱鲆(Scophthalmus maximus)消化及肠道菌群的影响[D];大连海洋大学;2016年
2 何伟聪;二种益生菌对军曹鱼幼鱼生长性能、免疫酶和消化酶活性、肠道菌群结构及TLR9基因表达量的影响[D];广东海洋大学;2015年
3 方程;微生态制剂对匙吻鲟幼鱼生长发育和消化系统的影响的研究[D];西北农林科技大学;2014年
4 郭升伟;益生素对仔猪生长性能、血液生化指标及免疫功能的影响[D];福建农林大学;2010年
5 邱燕;三种微生态制剂对草鱼(Ctenopharyngodon idellus)生长性能、生理机能及肠道黏膜的影响[D];苏州大学;2010年
6 王继凤;丁酸钠对断奶仔猪肠黏膜结构及黏膜免疫相关细胞影响的研究[D];中国农业大学;2005年
,本文编号:1909441
本文链接:https://www.wllwen.com/shoufeilunwen/zaizhiyanjiusheng/1909441.html