养殖鳖的引入对稻田水稻生长、产量及土壤微生物群落的影响
本文选题:稻鳖共作 + 稻田水体理化性质 ; 参考:《上海海洋大学》2017年硕士论文
【摘要】:农业-水产复合生产体系(Integrated agri-aquaculture system,IAAS)因其具有良好的生态环境效应及能生产满足市场对食品安全需求的绿色食品而成为了农业可持续发展的主要方向之一。目前国内外对各类稻渔种养殖模式的土壤细菌群落结构特征尤其是相关功能基因的菌群的研究较为薄弱,成为限制其推广的因素之一。虽然已有综合种养模式对土壤细菌影响的研究,但相关研究大多受制于方法与技术,有关稻田综合种养系统中的土壤微生物数量及多样性、和对稻田土壤中细菌功能基因的多样性及其功能的研究还较少。本课题拟以稻鳖共作这一广泛推广的稻渔模式为基础,一方面通过对不同种养模式下稻田土壤理化性质、水稻生长指标、水稻产量及稻田水体养分含量等进行了比较分析,从而探明在养殖鳖的“不间断施肥”及“养殖鳖扰动作用”对稻田物质循环与能量流动的直接影响;另一方面采用基于16S rRNA基因与nifH基因的Illumina Miseq测序的方法,研究养殖鳖的引入对稻田表层土壤、根系土壤的细菌群落结构及组成的影响。主要研究结果如下:1、与稻田单作相比,稻鳖综合种养模式下的稻田中水体中的NH_4~+、NO_3~-和PO_4~-浓度在水稻生长中后期(水稻移植后34-109天)都得到了提升,结果表明引入养殖鳖后稻田水体可有溶性养分得到有效提高;养鳖稻田在水稻的产量、有效穗粒数均得到显著(P0.05)提高,表明稻鳖综合养殖模式中稻谷产量的差异主要来自于水稻有效穗粒数上的差异。稻鳖综合种养组的水稻结实率提高了约0.77%,千粒重提高了约10.17%,水稻生物量积累田提高约3.59%,水稻的分蘖数提高约8.90%。2、与稻田单作相比,稻鳖综合种养模式下稻田土壤的有机质、速效P、速效K、全N、硝态N和氨态N的含量都得到一定的提高,其中全N、硝态N和氨态N含量得到了显著(P0.05)提升。结果表明稻田中引入养殖鳖能较好的改善土壤,提高土壤养分含量。3、与稻田单作(R-M)相比,稻鳖共作组(R-T)下稻田表层和根际土壤中细菌群落的结构和组成都呈现出显著差异。稻鳖共作组下稻田表层及根系土壤的微生物丰富度及多样性均高于稻田单作组。与R-M相比,R-T表层土壤中绿弯菌门、硝化螺旋菌门和酸杆菌门的相对丰度增加,变形菌门和拟杆菌门的相对丰度减少;而在根系土壤中,R-M组的硝化螺旋菌门、拟杆菌门和变形菌门的相对丰度增加,而绿弯菌门和酸杆菌门的相对丰度减少。稻田土壤的主要优势菌属为酸杆菌属(Acidobacteria bacterium_uncultured)、亚硝化单胞菌属(Nitrosomonadaceae_uncultured)、硝化螺旋菌属(Nitrospiraceae_uncultured)、地杆菌属(Geobacter)、芽单胞菌属(Gemmatimonadaceae_uncultured)和黄单胞菌属(Xanthomonadales_norank)这6类。其中亚硝化单胞菌属(Nitrosomonadaceae_uncultured)、硝化螺旋菌属(Nitrospiraceae_uncultured)、芽单胞菌属(Gemmatimonadaceae_uncultured)和酸杆菌属(Acidobacteria bacterium_uncultured)在两种模式的表层土壤中的相对丰度存在显著差异(P0.05);硝化螺旋菌属(Nitrospiraceae_uncultured)和地干菌属(Geobacter)在根系土壤中的相对丰度存在显著差异(P0.05)。OUT Venn图、PCA分析及聚类分析均表明稻田引入养殖鳖后,稻田的根系和表层土壤菌群群落都产生了较为明显的差异,且相对于稻田根系土壤菌群,稻田的表层土壤的菌群结构和组成的差异更加的明显。CCA分析表明土壤微生物群落的结构与土壤机质、有效磷、NO_3~--N和NH_4~+-N含量有很好的相关性。4、水稻根系固氮菌基因nifH的测序结果显示:两种模式下属分类级别的固氮菌主要为慢生根瘤菌属(Bradyrhizobium),地杆菌属(Geobacter),脱硫弧菌属(Desulfovibrio)、除硫单胞菌属(Desulfuromonas)、嗜盐红螺菌属(Halorhodospira)、固氮菌属(Azotobacter)、脱硫球茎菌属(Desulfobulbus)、甲基单胞菌属(Methylomonas)、固氮螺菌属(Azospirillum)、Pseudacidovorax、Anaeromyxobacter、Sideroxydans这13类,它们在不同模式和采样时期的比例不同。引入养殖鳖后,稻田的土壤固氮微生物的多样性指数及丰富度指数均得到提升。养殖鳖的引入显著的影响了稻田根系土壤固氮细菌的多样性与丰富度,但这些影响在两种模式以及不同生育期之间存在差异。PCA和聚类分析结果表明稻田水稻的生育时期与种养模式对稻田根系土壤固氮微生物均具有影响,且前者的影响更大。
[Abstract]:Integrated agri-aquaculture system (IAAS) has become one of the main directions of sustainable agricultural development because of its good ecological environment effect and the ability to produce green food to meet the market demand for food safety. The soil bacterial community structure of various types of rice and fishery culture at home and abroad The research on bacteria group characteristic especially related functional genes is relatively weak, which has become one of the factors that restrict its popularization. Although there has been a study of the effects of comprehensive breeding models on soil bacteria, most of the related studies are subject to methods and techniques, the number and diversity of soil microbes in the comprehensive breeding system of paddy fields, and in the paddy soil soil. There are few studies on the diversity and function of the functional genes of bacteria. This topic is based on the widely popularized rice fishing model of the rice shelled turtle. On the one hand, the soil physical and chemical properties, the growth index of rice, the yield of rice and the nutrient content of the water in the paddy field are analyzed on the one hand. The direct effects of "uninterrupted fertilization" and "disturbed effect" of "cultured shelled turtle" on the material circulation and energy flow in rice fields; on the other hand, the effect of the introduction of 16S rRNA gene and nifH gene on the structure and composition of the bacterial community structure and composition of soil soil soil in the rice field and soil soil soil was studied by using the Illumina Miseq sequencing method based on the gene and the nifH gene. The results are as follows: 1, compared with the rice field single cropping, the concentration of NH_4~+, NO_3~- and PO_4~- in the water body of rice field under the comprehensive breeding model of rice shelled rice has been promoted in the middle and late period of rice growth (34-109 days after rice transplantation). The results show that the soluble nutrients in the water body of the rice field can be effectively improved after the introduction of the cultured turtle, and the production of rice in the rice field is produced. The quantity and the number of effective spikes were improved significantly (P0.05), indicating that the difference of rice grain yield in the comprehensive breeding model of rice shelled Turtle was mainly from the difference of the grain number of effective panicle. The rice seed setting rate of the rice turtle comprehensive breeding group increased by about 0.77%, the 1000 grain weight increased by about 10.17%, the rice biomass accumulation field increased by about 3.59%, and the number of rice tillers increased. About 8.90%.2, compared with rice field single cropping, the organic matter of soil soil, quick acting P, quick acting K, all N, nitrate N and ammonia N content have been improved under the comprehensive breeding model of rice shelled turtle, of which N, nitrate N and ammonia N content have been improved significantly (P0.05). The results show that rice Tanaka introduced cultured turtle can improve soil and improve soil nutrients. Compared with Inada Saku (R-M), the structure of bacterial community in the surface and rhizosphere soil of rice field was significantly different from that in the soil of rice and turtle co cropping group (R-T). The microbial richness and diversity of the soil in the surface and root of the rice field were higher than that in the single cropping group. Compared with the R-M, the nitration of green bending bacteria in the surface soil of R-T was nitrification. The relative abundance of the Spira and bacilli increased, and the relative abundance of the Proteus gates and the bacteriobacteria decreased, while in the root soil, the relative abundance of the nitrifying spirals, the bacteriobacteria and the deformable bacteria in the R-M group increased, while the relative abundance of the phylum green gate and the acid bacilli decreased. The main dominant bacteria in the paddy soil were the genus A (A). Cidobacteria bacterium_uncultured), nitrifying monomonas (Nitrosomonadaceae_uncultured), nitrifying Spira (Nitrospiraceae_uncultured), Bacillus subteris (Geobacter), buds (Gemmatimonadaceae_uncultured) and Xanthomonas (Xanthomonadales_norank), including nitrous monomonas (Nitrosomonadaceae_u) genus (Nitrosomonadaceae_u). Ncultured), nitrifying spirillus (Nitrospiraceae_uncultured), the relative abundance of Gemmatimonadaceae_uncultured and Acidobacteria bacterium_uncultured (P0.05) in the two models of the surface soil (P0.05), Nitrospiraceae_uncultured and Geobacter (Geobacter). The relative abundance in the root soil was significantly different (P0.05).OUT Venn map. PCA analysis and cluster analysis all showed that after the introduction of the cultivated turtle in the paddy field, the root and surface soil bacteria community in the paddy field had a more obvious difference, and the difference in the structure and composition of the surface soil in the rice field was more different than that of the soil bacteria group in the rice field. .CCA analysis showed that the structure of soil microbial community had a good correlation with soil organic matter, available phosphorus, NO_3~--N and NH_4~+-N content.4. The sequencing results of the nitrogen fixing bacteria gene nifH of rice roots showed that the two types of nitrogen fixing bacteria were mainly slow rooting fungi (Bradyrhizobium) and Bacillus subgenus (Geobacter). Desulfovibrio, Desulfuromonas, Halorhodospira, Azotobacter, Desulfobulbus, Methylomonas, Azospirillum, Pseudacidovorax, Anaeromyxobacter, Sideroxydans, these are 13 types, and they are in different patterns and in different patterns. The diversity index and richness index of soil nitrogen fixing microorganisms in the paddy field were improved after the introduction of the cultured turtle. The introduction of the cultured shelled turtle significantly affected the diversity and richness of the nitrogen fixing bacteria in the root soil of the paddy field, but these effects were different.PCA and accumulation between the two models and the different growth stages. The results of the analysis showed that the growth period and planting pattern of paddy rice had an effect on the soil nitrogen fixing microorganisms in the paddy field, and the former had greater influence.
【学位授予单位】:上海海洋大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S966.5;S511
【参考文献】
相关期刊论文 前10条
1 袁梅;谭适娟;孙建光;;水稻内生固氮菌分离鉴定、生物特性及其对稻苗镉吸收的影响[J];中国农业科学;2016年19期
2 林利红;王延平;王帅;;稻田养蟹对水稻土壤理化性质的影响研究[J];辽宁农业科学;2016年03期
3 汪其同;朱婉芮;刘梦玲;王华田;王延平;张光灿;姜岳忠;;基于高通量测序的杨树人工林根际和非根际细菌群落结构比较[J];应用与环境生物学报;2015年05期
4 袁红朝;吴昊;葛体达;李科林;吴金水;王久荣;;长期施肥对稻田土壤细菌、古菌多样性和群落结构的影响[J];应用生态学报;2015年06期
5 李凤博;冯金飞;周锡跃;吴殿星;陈凡;徐春春;方福平;;鱼塘种稻对养殖水体营养物质的去除作用研究[J];中国水稻科学;2015年02期
6 蔡艳;郝明德;张丽琼;臧逸飞;何晓雁;;应用454测序技术分析种植制度对黑垆土微生物多样性的影响[J];作物学报;2015年02期
7 夏围围;贾仲君;;高通量测序和DGGE分析土壤微生物群落的技术评价[J];微生物学报;2014年12期
8 王思潮;曹凑贵;李成芳;熊又升;汪金平;;耕作模式对冷浸田水稻产量和土壤特性的影响[J];中国生态农业学报;2014年10期
9 禹盛苗;朱练峰;欧阳由男;许佳莹;张均华;许德海;金千瑜;;稻鸭种养模式对稻田土壤理化性状、肥力因素及水稻产量的影响[J];土壤通报;2014年01期
10 毛盼;胡毅;罗方兴;;中华鳖生物学特性及其常见传染性疾病的研究[J];湖南饲料;2013年05期
相关硕士学位论文 前3条
1 王秀呈;稻—稻—绿肥长期轮作对水稻土壤及根系细菌群落的影响[D];中国农业科学院;2015年
2 徐敏;水稻栽培密度对稻田土壤肥力和稻蟹生长影响的初步研究[D];上海海洋大学;2013年
3 李娜娜;中国主要稻田种养模式生态分析[D];浙江大学;2013年
,本文编号:1921511
本文链接:https://www.wllwen.com/shoufeilunwen/zaizhiyanjiusheng/1921511.html