JS90型履带式联合收割机行走变速箱的设计与分析
本文选题:履带式联合收割机 + 行走变速箱 ; 参考:《江苏大学》2017年硕士论文
【摘要】:履带式联合收割机是我国水稻收获的主要工具,而随着我国水稻连片种植面积的增加,对其作业效率和承载能力都提出了更加严格的要求。为适应市场需求,水稻收割机械的割幅、喂入量、整机质量都在逐渐增加,变速箱作为联合收割机产品最重要的行驶性能控制部件和功率传输部件,其承载能力也需随之增大,使之适配功率能够达到85~95kW。因此,如何提高变速箱的承载能力成为了研究重点,对变速箱工作原理的研究、结构创新的设计变得尤为重要。本文根据已有收割机行走变速箱峰值载荷的测试和适配功率达85~95kW的设计要求,设计一种JS90型履带式联合收割机变速箱。基于理论设计计算,利用Pro/E对变速箱进行建模;结合ADAMS与ANSYS,对变速箱传动系统与关键部件进行动力学分析和模态分析,与理论计算结果进行对比,验证变速箱的可行性;并对变速箱进行试验验证。本文的主要研究内容有:(1)针对现有履带式联合收割机变速箱由于过载工作导致齿面胶合、制动器壳破裂及制动片烧毁的现象,以江苏沃得农业机械有限公司生产的飞龙4LZ-4.0A型履带式联合收割机为试验样机,基于无线传感技术,对收割机行走变速箱动力输出半轴的载荷进行测定。选择四种不同类型的路面、两种不同倾角的路面对试验车变速箱半轴的直线行驶载荷进行测试,并在泥田路面对其进行转弯行驶载荷测试。测试数据表明,收割机在倾角为13°路面行驶时半轴扭矩峰值为1057.33 N·m,功率值为33.21kW;收割机在泥田路面转弯行驶时半轴扭矩峰值为1660.2 N·m,功率值为31.29kW。这两种工况下,半轴载荷超越了其承载能力,可知收割机在田间过埂或转弯行驶时,行走变速箱处于过载状态,致使收割机变速箱存在可靠性低、故障率高的缺陷。(2)以4LD-5.0型履带式联合收割机底盘的性能参数为要求,提出变速箱的设计方案和传动系统图。确定其三个档位传动比分别为36.16、22.45、16.96。基于履带车辆行驶力学,确定变速箱各档位不同轴扭矩、功率及转速等关键值。利用变速箱各零部件所受最大载荷值,对齿轮、轴及花键进行理论设计计算和强度校核。由于小齿轮易发生根切、强度比大齿轮低,因此对变速箱齿轮系进行变位处理,改善齿轮啮合特性。根据齿轮、轴等部件设计计算的参数值,利用Pro/E三维制图软件对变速箱整体进行建模与虚拟装配。(3)为验证变速箱的可行性,利用ADAMS仿真软件对变速箱整体齿轮传动机构进行动力学分析。以变速箱二档工况为例,通过定义材料属性、添加转动副约束、施加扭矩载荷,最后添加转速驱动,完成对虚拟样机的前期处理。基于碰撞接触理论,对变速箱的啮合力进行动力学分析,得到了变速箱最后一对传动齿轮齿面啮合力以及转动角速度值,分别为24178.35N、748.32d/s,通过与理论计算值对比,数据基本相符,验证了仿真结果的可靠性。为验证齿轮、轴的可靠性,利用ANSYS仿真软件中瞬态动力学分析模块(Transient Structural)对模型进行应力分析,对齿轮和动力输出半轴都施加随时间改变的载荷,分析得到齿轮及动力输出半轴的应力云图。可知,轴受到的最大应力为450.32MPa,齿轮受到的最大应力为385.54MPa,都小于材料的屈服极限值835MPa。为分析变速箱的固有频率,利用ANSYS仿真软件中模态分析模块(Modal)对动力输出半轴进行模态分析,得到半轴的前四阶模态振型,可知轴的一阶固有频率为182.49Hz,而该轴最高转频为121.04Hz,明显低于一阶模态的固有频率值。(4)进行JS90型变速箱加工与试制,并将装配结束后的变速箱安装在4LD-5.0型履带式联合收割机底盘上,组成JS90型变速箱性能验证试验车,整机满载质量达到7t。设置试验方案来验证变速箱的传动性能和效率,选择水泥路对收割机的直线行驶性能、转弯行驶性能以及行走载荷进行测试,并对试验数据进行分析。可知:收割机一档的行驶速度为1.00m/s;二档的行驶速度为1.54m/s;三档的行驶速度为2.05m/s;转弯角速度最快可以达到0.625rad/s;动力输出半轴受到的最大扭矩为4293.29N·m。收割机的行驶速度要求均能正常实现,且在试验过程中,变速箱换挡平顺,无任何异响和故障出现,证明了设计变速箱的可行性。
[Abstract]:The caterpillar combine harvester is the main tool for rice harvest in China, and with the increase of rice area in China, the operation efficiency and carrying capacity are more strictly required. In order to meet the demand of the market, the cutting width, feeding quantity and the whole machine quality of rice harvesting machinery are increasing gradually, and the gearbox is used as a combine harvester. The most important driving performance control component and power transmission component of the product, its bearing capacity also need to increase, so that the matching power can reach 85~95kW., so how to improve the carrying capacity of the transmission has become the focus of research. It is very important to study the working principle of the gearbox and the new design of the structure. This paper is based on the existing harvest. The design of a JS90 type caterpillar combine gearbox is designed for the test of the peak load of the traveling gearbox and the design requirement of the suitable power of 85~95kW. Based on the theoretical design and calculation, the gearbox is modeled with Pro/E, and the dynamic analysis and modal analysis of the transmission system and the key components are carried out with the ADAMS and the ANSYS, and the theory is analyzed. The calculation results are compared to verify the feasibility of the transmission and test the gearbox. The main contents of this paper are as follows: (1) the phenomenon of the tooth surface gluing, the rupture of the brake shell and the burning of the brake disc caused by the overload work of the existing caterpillar combine harvester, is produced by the Jiangsu Wald cheerful agriculture machinery corp. Feilong 4LZ-4.0A type caterpillar combine harvester is an experimental prototype. Based on wireless sensing technology, the load of the dynamic output semi shaft of the walking transmission of a harvester is measured. Four kinds of different types of pavement are selected and two different angles are tested for the linear driving load of the semi axle of the test vehicle, and they are faced in the mud field road. The test data show that the peak torque peak of the reaper is 1057.33 N / M and the power value is 33.21kW when the dip angle is 13 degrees, and the peak torque peak of the reaper is 1660.2 N. M when the harvester is turning on the mud field road, and the power value is 31.29kW.. The load of the semi shaft is beyond its bearing capacity. When the cutting machine is crossing or turning in the field, the walking transmission is in the overload state, which causes the defect of the gearbox of the harvester low reliability and high failure rate. (2) the design and transmission system of the gearbox are proposed with the performance parameters of the 4LD-5.0 type caterpillar combine harvester, and the transmission ratio of the three gear positions is determined to be 3, respectively. 6.16,22.45,16.96. is based on the driving mechanics of the tracked vehicle to determine the key values of torque, power and speed of the different gear axes of the gearbox. The theoretical design calculation and strength checking of the gear, shaft and spline are carried out by using the maximum load value of each component of the gearbox. The strength of the gear wheel is easy to take root and the strength is lower than that of the large gear. So the transmission box is made to the gearbox. The gear system is modified to improve the gear meshing characteristics. According to the parameter values of the gear, shaft and other parts, the Pro/E 3D drawing software is used to model and virtual assembly of the gearbox. (3) to verify the feasibility of the gearbox, the dynamic analysis of the gear transmission mechanism of the variable speed box is carried out by using the ADAMS simulation software. As an example of the second gear condition of the speed box, by defining the material properties, adding the rotation pair constraint, applying the torque load and adding the speed drive, the initial treatment of the virtual prototype is completed. Based on the collision contact theory, the dynamic analysis of the rodent force of the gearbox is carried out, and the meshing force and rotation angular speed of the last pair of transmission gear teeth are obtained. To verify the reliability of the gear and shaft, the reliability of the gear and shaft is verified by comparison with the theoretical calculation. In order to verify the reliability of the gear and shaft, the stress analysis of the model is carried out by the transient dynamic analysis module (Transient Structural) in the ANSYS simulation software, which is applied to the gear and the power output semi axis. It can be found that the maximum stress of the shaft is 450.32MPa and the maximum stress of the gear is 385.54MPa, which is less than the yield limit value 835MPa. of the material to analyze the inherent frequency of the gearbox, and uses the modal analysis module (Modal) in the ANSYS simulation software to drive the power transmission. The first four order modal vibration modes of the semi axle are obtained by modal analysis. The first order natural frequency of the axis is 182.49Hz, and the maximum frequency of the axis is 121.04Hz, which is obviously lower than the natural frequency value of the first order mode. (4) the processing and trial production of the JS90 type transmission box is carried out, and the gearbox after the assembly knot is installed in the 4LD-5.0 type caterpillar type joint reaping. On the machine chassis, the JS90 type transmission performance test vehicle is formed. The full load quality of the machine reaches the 7T. setting test scheme to verify the transmission performance and efficiency of the gearbox. It chooses the cement road to test the linear driving performance of the harvester, the turning performance and the walking load, and analyses the test data. We know that the harvester is one gear The driving speed is 1.00m/s, the driving speed of the second gear is 1.54m/s, the driving speed of the third gear is 2.05m/s, the turning angle speed can reach 0.625rad/s, and the maximum torque of the power output semi shaft is the normal realization of the driving speed of the 4293.29N. M. harvester, and in the test process, the gearbox has a smooth shift, without any abnormal sound and reason. The obstacle appeared, which proved the feasibility of the design of the gearbox.
【学位授予单位】:江苏大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S225
【参考文献】
相关期刊论文 前10条
1 王仰龙;冯晓静;刘俊峰;刘伟;;果园风送喷雾机风机叶片模态分析——基于ANSYS Workbench[J];农机化研究;2015年03期
2 陈庆文;韩增德;崔俊伟;王国新;乔晓东;张子瑞;韩科立;甘邦兴;;自走式谷物联合收割机发展现状及趋势分析[J];中国农业科技导报;2015年01期
3 牟鹏博;陶凤和;贾长治;马万里;;履带车辆变速箱齿轮啮合过程分析及寿命预测[J];机械传动;2014年01期
4 朱昊;卢泽民;李耀明;;履带式联合收获机械差动变速箱的设计与仿真[J];农机化研究;2014年01期
5 王刚;吴崇友;伍德林;;我国通用型联合收割机现状与发展思考[J];中国农机化学报;2013年06期
6 王飙;刘峰;李云伍;;我国水稻收割机的发展现状及发展方向[J];农机化研究;2013年10期
7 李海同;黄鹏;舒彩霞;;我国稻麦油机械化收获技术研究现状与趋势[J];农业工程;2013年05期
8 王峗;;联合收割机变速箱工艺革新技术[J];农业与技术;2013年08期
9 林宇钢;刘丽敏;周益君;王琛;方向;;4LYWB-33型履带自走式联合收割机变速控制系统设计[J];农机化研究;2013年03期
10 冯江;蒋亦元;;水稻联合收获机单边驱动原地转向机构的机理与性能试验[J];农业工程学报;2013年04期
相关博士学位论文 前1条
1 佴军;近30年江苏省水稻生产的时空变化与效益分析[D];扬州大学;2013年
相关硕士学位论文 前9条
1 张国鑫;某履带车辆传动系统动态扭矩测试与数据预处理[D];北京理工大学;2016年
2 胡际勇;重型履带车辆软地面行驶性能研究[D];吉林大学;2012年
3 陈媛媛;履带车辆行动系统动力学仿真分析[D];沈阳理工大学;2012年
4 王广敏;5t装载机变速箱的改进与试验研究[D];吉林大学;2011年
5 耿兴春;机械式变速箱建模及虚拟样机性能仿真[D];南华大学;2010年
6 傅友宾;基于PRO/E和ADAMS的变速器动力学仿真[D];大连理工大学;2007年
7 郑凤新;大功率行走机械自动变速箱的设计与研究[D];兰州理工大学;2006年
8 刘莉;重型履带车辆行走装置设计理论与方法研究[D];吉林大学;2005年
9 康正生;TY420履带式推土机行星齿轮变速箱设计研究[D];大连理工大学;2003年
,本文编号:1951856
本文链接:https://www.wllwen.com/shoufeilunwen/zaizhiyanjiusheng/1951856.html