沼气集中供气工程太阳能增温技术研究
本文选题:沼气工程 + 太阳能 ; 参考:《浙江大学》2017年硕士论文
【摘要】:户用沼气正在向整村沼气集中供气转变,大中型沼气池具有广阔的发展前景,研究开发太阳能沼气池供热系统具有十分重要的意义。本文针对大中型沼气池冬季发酵温度低、控制方式不合理等问题,对太阳能沼气池供热系统进行深入研究。对浙江省诸暨市太阳能加热沼气工程和浙江省开化县太阳能-空气源热泵加热沼气工程的池内外热环境进行现场连续检测,检测参数包括室外环境参数(环境温度、太阳总辐射强度、风速风向)、沼气池温度、水箱温度和热流量。并利用测试数据分析两个实验沼气池的加热系统性能,找出系统薄弱环节提出改进意见。研究结果表明,浙江诸暨地区的太阳能加热沼气工程,在2015年12月8日至2016年3月31日期间,总热负荷中占比最大的是池体散热,其中顶部散热量占总热负荷的29.39%~29.74%,底部散热量占18.09%~18.39%,侧壁散热量占38.41%~39.03%。12月8日~1月27日由于太阳能辐射强度小、循环温差设定值较高导致无法达到当前设定循环温差,所以沼气池在该期间没有得到热量。当前投料量远低于理论投料量,从22℃开始即使沼液温度增加,产气量也不会增加。浙江开化地区的太阳能-空气源热泵加热沼气工程,在2015年12月9日至2016年3月31日测试期间,总的热损失中沼气池最主要的能量散失途径是池体散热量,顶部散热量占36.33%~41.98%,底部散热量占19.70%~27.55%,侧壁散热量占14.94%~15.80%。沼气池的发酵温度上限值是23℃,超过这个上限值后即使发酵温度增加产气量也不会增加。利用能量守恒原理建立太阳能沼气池供热系统数学模型,并用模拟值和实测值之间的平均误差和平均相对误差验证模型的准确性。结果表明,在典型的晴天、多云和阴天,开化县沼气池和诸暨沼气池中的料液温度的检测值和模拟值的最大平均误差分别是0.159℃和0.285℃,其最大相对误差分别为0.73%和1.47%,模型准确度良好。根据诸暨太阳能沼气池供热系统模型,利用与诸暨地区相近的杭州典型年数据进行模拟,改变太阳能集热器与储热水箱、储热水箱与沼气池之间的循环温差。结果发现:在12月~3月,太阳能与储热水箱和储热水箱与沼气池沼液的循环温差为(15℃,10℃、(15℃,5℃、(10℃,10℃、(10℃,5℃ 和(5℃,5℃时的平均温度比当前的循环温差(15℃,15℃)下分别高2.49℃、3.48℃、3.57℃、4.64℃和5.41℃。在当前投料量下循环温差为(5℃,5℃)的时候,12月份~3月份发酵温度都高于22℃,日产气量保持68m3左右。所以循环温差如果继续减小,发酵温度会增加,但是在投料量不变的情况下,产气量不变,因此建议循环温差设置为(5℃,5℃)。根据建立的开化太阳能沼气池供热系统模型,利用与开化地区相近的衢州典型年数据模拟分析发酵温度23℃时的系统运行情况。得出以下结论:(1)在系统总耗电量中热泵机组耗电量占据的份额最大,达到60%以上;(2)低温季节的系统总耗电量占全年系统总耗电量的80.29%;(3)集热器面积在50m2~100m2时,联合加热系统的经济性优于单独的空气源热泵加热系统。如果集热器单价在700元/m2内,投资效益净现值随太阳能集热器面积的增加而增加。在太阳能集热器单价为800元/m2时,投资效益净现值在80 m2时达到最大值,然后开始减小。最后,设计计算一个杭州地区利用太阳能和空气源热泵联合加热的500 m3标准钢筋混凝土沼气池,然后建立相应的太阳能沼气池供热系统数学模型,模拟分析了杭州地区典型年利用太阳能和空气源热泵联合加热的500m3标准钢筋混凝土沼气池的两种情况:(1)给定加热系统改变发酵温度设定值;(2)给定发酵温度和空气源热泵功率改变太阳能面积。得出以下结论:1.加热系统中太阳能集热器面积为184m2,空气源热泵机组功率7.5kW时,在20℃~30℃发酵温度范围内,在沼气定价为1.2元/m3时,在低温季节和全年情况下,净利润都先增加后减小,并且都在29℃时达到最大值。所以如果以利润最大化为目标,建议全年发酵温度设定在29℃。将沼气换算为天然气价格时,售价为2.27元/m3,低温季节和全年的净利润在20℃~30℃内都随着发酵温度增加而增加,所以发酵温度设定值越高经济性越好。2.给定发酵温度25℃,对应的加热系统中加热系统中空气源热泵机组功率为7.5kW,太阳能集热器面积变化区间是30 m2~250 m2。太阳能集热器单价为500元/m2时,投资效益净现值为正值且随着集热器面积增加而增加。集热器单价为600、700和800元/m2时,投资效益净现值最大时对应的集热器面积分别是220 m2、210 m2 和 170 m2。
[Abstract]:The household biogas is changing to the whole village biogas, and the large and medium-sized biogas pool has a broad development prospect. It is of great significance to study and develop the heating system of the solar biogas pool. In this paper, the heating system of the solar biogas digester is deeply researched in view of the low fermentation temperature of the large and medium-sized biogas digesters in winter and the unreasonable control methods. The thermal environment of the solar heating biogas project in Zhuji, Zhejiang and the heat environment of the solar air source heat pump in Kaihua County, Zhejiang Province, was tested in a continuous field. The parameters included outdoor environmental parameters (ambient temperature, total solar radiation intensity, wind speed and wind direction), the temperature of the biogas pool, the temperature of the water tank and the heat flow. The test data analyses the performance of the heating system of two experimental biogas pools and finds out the weakness of the system. The results show that the maximum heat load in the total heat load in the Zhuji area of Zhejiang is the largest in the total heat load during the period from December 8, 2015 to March 31, 2016, and the amount of the top heat dissipation in the total heat load is the total heat load. From 29.39% to 29.74%, the heat dissipation at the bottom is 18.09% ~ 18.39%, the heat dissipation of the side wall is 38.41% ~ 39.03%.12 months 8 ~ January 27th, because the solar radiation intensity is small and the set value of the cycle temperature difference is high, which can not reach the current set cycle temperature difference, so the biogas pool has not got the heat during this period. The current dosage is far below the theoretical dosage, from 2. The amount of gas production will not increase even if the temperature of the biogas liquid is increased at 2 C. The solar air source heat pump in the Zhejiang Kaihua area is used to heat the biogas project. During the period from December 9, 2015 to March 31, 2016, the main energy dissipation way of the total heat loss in the total heat loss is the amount of heat dissipation in the pool, the heat dissipation at the top is 36.33% to 41.98%, and the bottom heat dissipation is in the bottom. The amount of 19.70% ~ 27.55% and the upper limit of the fermentation temperature of the side wall heat dissipation in 14.94% ~ 15.80%. methane pool is 23. After the upper limit is above the upper limit, the gas production will not increase even if the fermentation temperature increases. By using the principle of conservation of energy, the mathematical model of the heating system of the solar biogas pool is established, and the average error between the simulated and measured values is peaceful. The results show that the maximum average errors of the measured values and the simulated values of the liquid temperature in the typical sunny days, cloudy and cloudy days, and the maximum average errors of the measured and simulated values in the biogas pool and the Zhuji biogas pool in Kaihua County are 0.159 and 0.285, respectively, and the maximum relative errors are 0.73% and 1.47% respectively, and the accuracy of the model is good. According to Zhuji too The heat supply system model of the Yang energy digester is used to simulate the cycle temperature difference between the solar collector and the heat storage tank, the heat storage tank and the biogas pool in Zhuji, which is similar to the Hangzhou typical year data. The results show that the cycle temperature difference between the solar energy storage tank and the hot water storage tank and the biogas tank from December to March is (15, 10). At 15, 5, (10, 10, 10, 5, 5, 5), the average temperature was higher than the current cycle temperature difference (15, 15, 15), respectively, higher 2.49 degrees, 3.48, 3.57, 4.64, and DEG C. The temperature difference between December and March was higher than that of 68m3. If the cycle temperature difference continues to decrease, the fermentation temperature will increase, but the amount of gas production is constant when the feeding amount is constant. Therefore, it is suggested that the cycle temperature difference be set to (5 degrees C, 5 C). According to the established model of the heating system of the solar biogas digester, the fermentation temperature is simulated and analyzed by the typical year data of Quzhou, which is close to the Kaihua area. The following conclusions are drawn: (1) the share of the power consumption of the heat pump unit is the largest in the total energy consumption of the system, reaching more than 60%. (2) the total energy consumption of the system in the low temperature season accounts for 80.29% of the total energy consumption of the whole year system. (3) the economy of the combined heating system is superior to the separate air source heat pump when the collector area is 50m2 to 100m2. If the unit price of the collector is within 700 yuan /m2, the net present value of the investment benefit increases with the increase of the solar collector area. When the unit price of the solar collector is 800 yuan /m2, the net present value of the investment benefit reaches the maximum at 80 m2, and then begins to decrease. Finally, a solar and air source heat pump in Hangzhou area is designed and calculated. The 500 m3 standard reinforced concrete biogas digester was heated, and then the corresponding mathematical model of the solar biogas pool heating system was established. Two cases of the typical 500m3 standard reinforced concrete biogas pool, which was combined with solar energy and air source heat pump in Hangzhou area, were simulated and analyzed. (1) a given heating system changed the setting value of the fermentation temperature; (2 Given the given fermentation temperature and the power of the air source heat pump to change the area of solar energy, the following conclusions are drawn: 1. when the area of the solar collector is 184m2 and the power of the air source heat pump unit is 7.5kW, the value of the biogas price is 1.2 yuan /m3, and the net profit is increased first in the low temperature season and the whole year. Reduce, and reach the maximum at 29 degrees. So if the maximum profit is taken as the goal, it is suggested that the fermentation temperature of the year be set at 29. When the biogas is converted to natural gas price, the price is 2.27 yuan /m3, the low temperature season and the whole year net profit increase with the increase of the fermentation temperature at 20 to 30 degrees, so the higher the temperature of the fermentation is, the more the temperature is set. The high economy is better, the better the.2. temperature is 25 C, the air source heat pump unit in the heating system is 7.5kW in the heating system, the area of the solar collector area is 30 m2 to 250 m2. solar collector unit price of 500 yuan /m2, the net present value of the investment benefit is positive and increases with the increase of the collector area. For the 600700 and 800 yuan /m2, the area of the collector area corresponding to the maximum net present value of investment benefits is 220 m2210 m2 and 170 m2. respectively.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S216.4;S214
【相似文献】
相关期刊论文 前10条
1 陈锡明;太阳能技术正在走整合之路[J];可再生能源;2002年03期
2 ;太阳能技术清上园住宅成功示范[J];建设科技;2005年Z1期
3 ;兰州将成立“国际太阳能技术促进转让中心”[J];甘肃科学学报;2006年01期
4 李海英;白玉星;;太阳能技术在建筑中应用的综合策略[J];工业建筑;2007年03期
5 王少南;;加快发展我国太阳能技术的几点建议[J];广西城镇建设;2009年01期
6 ;中国科学院启动太阳能行动计划[J];电网技术;2009年04期
7 闫明月;;中国科学院启动太阳能行动计划[J];节能;2009年01期
8 ;太阳能技术的开发与利用[J];华电技术;2010年01期
9 刘闽敏;金晓东;;建筑与太阳能技术一体化设计[J];山西建筑;2010年13期
10 凌;;太阳能技术的近期与中期[J];能源工程;1985年02期
相关会议论文 前10条
1 ;使用太阳能将比原油更便宜[A];节能减排论坛——福建省科协第八届学术年会卫星会议论文专刊[C];2008年
2 卢磊;陈效华;刘淑娟;王秀田;;一种在汽车上应用太阳能技术的设计方案[A];第二十八届全国化学与物理电源学术年会论文集[C];2009年
3 王峥;郭振伟;;合肥海顿公馆太阳能一体化设计与应用分析[A];2008天津绿色建筑论坛、2008天津建材行业信息化与电子商务论坛论文集[C];2008年
4 王启镔;宋蕾;李萍;宋智勇;王东;;建筑设计中太阳能技术的综合利用[A];全国暖通空调制冷2010年学术年会资料集[C];2010年
5 张红丽;李杰;;住宅太阳能设计应注意的几个问题[A];土木建筑学术文库(第13卷)[C];2010年
6 陈卫华;;太阳能技术在奥运水上公园设计中的应用[A];全国住宅工程太阳能热水应用研讨会论文集[C];2004年
7 江猛;舒水明;胡新华;丁国忠;吴一梅;;太阳能综合试验房技术[A];“两区”同建与科学发展——武汉市第四届学术年会论文集[C];2010年
8 苑金芳;李红;;太阳能建筑一体化——阳台壁挂太阳能的应用[A];河南省土木建筑学会2010年学术研讨会论文集[C];2010年
9 刘芳;邢永杰;;太阳能在暖通空调中的应用[A];全国暖通空调制冷2000年学术年会资料集[C];2000年
10 徐宝江;陈义波;陈九法;李海清;;海林太阳能辅助地源热泵供热的可行性分析[A];走中国创造之路——2011中国制冷学会学术年会论文集[C];2011年
相关重要报纸文章 前10条
1 驻甘肃记者 王琰田;发展中国家太阳能国际研讨会在兰州召开[N];中国建材报;2007年
2 记者 陈宗立;兰州建立“国际太阳能技术促进转让中心”[N];光明日报;2006年
3 记者 李峰 尤婷婷;国际太阳能技术促进转让中心项目启动[N];甘肃日报;2006年
4 记者 王艳明;兰州将建国际太阳能技术中心[N];经济参考报;2006年
5 中国楼市记者 何云云;太阳能技术推广“内外”受困[N];中国建设报;2006年
6 驻甘肃记者 王琰田;国际太阳能中心项目在兰州开工[N];中国建材报;2007年
7 记者 赵晓霞;中科院太阳能行动计划启动[N];人民日报海外版;2009年
8 吴晶晶;中国科学院启动太阳能行动计划[N];中国建设报;2009年
9 陆晓辉;第六届中国国际太阳能秋交会将在常州举行[N];中国高新技术产业导报;2008年
10 记者 陈宗立 通讯员 韩业庭;首个国际太阳能中心在兰州建成[N];光明日报;2009年
相关博士学位论文 前1条
1 江清阳;与新型百叶集热墙结合的复合太阳能炕系统实验和理论研究[D];中国科学技术大学;2012年
相关硕士学位论文 前10条
1 陈景;太阳能热水和热泵复合热源的辐射供暖系统的优化设计研究[D];东南大学;2015年
2 朱洪新;太阳能—地源热泵复合能量系统在建筑节能中的应用研究[D];山东建筑大学;2016年
3 徐辉;居住建筑太阳能—地源热泵联合供暖特性的研究[D];上海工程技术大学;2016年
4 王威;太阳能—双热源热泵供暖系统优化研究[D];西南交通大学;2016年
5 段琪;石河子地区太阳能通风墙主要集热部件的热性能研究[D];石河子大学;2016年
6 项东昊;北方地区封闭式猪舍新型太阳能通风换热器的研究[D];吉林农业大学;2016年
7 朱姝妍;太阳能技术与高层办公商业综合体一体化设计[D];天津大学;2014年
8 刘国涛;地源热泵与太阳能联合应用的研究[D];山东大学;2016年
9 李e,
本文编号:1975112
本文链接:https://www.wllwen.com/shoufeilunwen/zaizhiyanjiusheng/1975112.html