当前位置:主页 > 硕博论文 > 农业硕士论文 >

谷物联合收获机产量信息获取与处理技术的研究

发布时间:2018-07-05 04:02

  本文选题:联合收获机 + 流量测量 ; 参考:《江苏大学》2017年硕士论文


【摘要】:测产系统作为现代农业的智能装备,通过获取田间农作物的产量信息,为农业生产经营提供决策。现有的测产系统通过获取联合收获机田间作业的谷物流量、作业面积和定位信息,实现间接测量农作物的产量。其中对流量的采集通过冲量法测量搅龙式输粮装置的谷物质量流量,以及利用容积法测量升运器刮板式输粮装置的谷物体积流量。前者受联合收获机外部振动和田间作业环境多变的干扰,目前的研究主要对流量信号频率滤波处理,缺少对流量信息细节分析,使得测量误差较大;后者受升运器刮板内谷物分布和装置倾斜变化的影响,导致测量误差大。为了减小谷物流量测量误差,提高北斗定位信息测量精度,获取可靠的产量数据,本文开展了如下工作。1.获取产量数据中的流量信息和定位信息。针对搅龙式输粮结构设计了冲量式流量传感器,在输粮搅龙出粮口安装导流板和改进传感器的冲击板为弧形板,获取可靠的流量冲击信息;对流量传感器输出设计了流量监测系统,便于后续的信号采集与标定。针对刮板式输粮结构设计了对射式激光阵列传感器,通过在升运器刮板侧壁安装多组激光器,将被测谷物划分为多个测量区域,减小谷物分布变化造成的测量误差。利用北斗定位模块获取定位信息,通过位置差分和伪距差分修正系统定位误差,进一步提高位置测量精度,为绘制精确的产量图提供依据。2.谷物流量信息处理方法研究。公开的研究缺乏对流量信息空间域和时间域的分析,通过分析流量传感器输出信号频谱特性,对信号中含有的机械振动、传感器自身噪声和信号漂移干扰的频段进一步研究。采用小波分解剔除噪声信号,根据流量信息中提取的噪声特征选择合适的小波基并确定分解尺度,对信号中高频分量进行多尺度分解后滤除,低频干扰采用阈值处理,将分解信号重构为流量有效信息。3.谷物产量信息的处理。设计车载测产系统读取流量、定位和作业速度信息,利用单片机将获取的信息按时间序列存储到SD卡中,产量数据由流量和作业速度与割幅关系计算得出。利用计算机读取SD存储的信息,将计算的产量数据导入到Origin软件的工作表中,由Origin软件绘图工具生成农田作业产量图。4.车载测产系统的试验。通过输粮搅龙平台对冲量式流量传感器进行标定试验,试验显示流量测量相对误差最大为1.68%。将测产系统安装在联合收获机上进行水稻收割试验,在输粮搅龙出口安装冲量式流量传感器,获取定位信息对应的流量。在作业区域内改变收获机作业速度改变谷物流量,通过计算收割区间的谷物质量,测产系统在各个作业区间累计质量测量平均相对误差为4.60%,说明小波分解在不同的作业参数下,能够减小噪声对流量测量的影响。根据测产系统存储数据生成的产量图和人工测量的产量对比,产量相对误差不超过7.14%,验证了绘制产量图的准确性。
[Abstract]:As the intelligent equipment of modern agriculture, the system of measuring production provides decision-making for agricultural production and management by obtaining the output information of field crops. The existing measurement system can indirectly measure the output of crops by obtaining the grain flow, the operating area and the location information of the field operation of the combined harvester. The quantity method is used to measure the grain mass flow of the grain feeding device and the volume flow measurement of the scraper type grain transport device by the volume method. The former is disturbed by the external vibration of the combined harvester and the changeable environment in the field operation. The current research mainly deals with the frequency filtering of the flow signal, and is short of the detailed analysis of the flow information. The measurement error is large; the latter is influenced by the change of the grain distribution in the scraper and the tilting of the device. In order to reduce the measurement error of the grain flow, improve the accuracy of the measurement of the location information of the Beidou and obtain the reliable output data, the following work.1. is carried out to obtain the flow information and location information in the output data. The impulse flow sensor is designed for the structure of the churning grain, which is installed in the grain outlet of the grain churning dragon and the impact plate of the improved sensor as the arc plate to obtain the reliable flow impact information. The flow monitoring system is designed for the output of the flow sensor so as to facilitate the subsequent collection and demarcation of the letter number. By installing multiple groups of lasers on the side wall of the lift board, the measured grain is divided into several measurement areas to reduce the measurement error caused by the change of grain distribution. The positioning information is obtained by the dipper positioning module, and the positioning error is corrected by the position difference and the pseudo distance difference, and the position is further improved. The measurement accuracy is based on the.2. grain flow information processing method to draw a precise output map. The open research lacks analysis of the spatial and temporal domains of the flow information. By analyzing the spectrum characteristics of the output signal of the flow sensor, the mechanical vibration, the noise of the sensor and the interference of the signal drift in the signal are entered. One step is to remove the noise signal by wavelet decomposition, select the appropriate wavelet base and determine the decomposition scale according to the noise characteristics extracted from the flow information, and filter the high frequency components in the signal after multiscale decomposition. The low frequency interference is processed by the threshold processing, and the decomposition signal is reconstructed into the processing of.3. grain yield information of the effective flow information of the flow. A vehicle measurement system is designed to read the information of flow, location and operation speed. The information obtained by the single chip computer is stored in the SD card according to the time series. The output data is calculated by the relation between the flow rate and the relationship between the work speed and the cutting amplitude. The information of the SD storage is read by the computer, and the output data is imported into the worksheet of the Origin software, and O The rigin software drawing tool generates the experiment of the field production production map.4. vehicle production system. The test shows that the relative error of the flow measurement is maximum of 1.68%. through the grain feeding agitate platform, and the maximum relative error of the flow measurement is 1.68%., which is installed on the combined harvester to carry out the rice harvest test, and is installed and washed at the export of the grain churning dragon outlet. The volume flow sensor is used to obtain the corresponding flow of location information. Change the speed of the harvester to change the grain flow in the operation area. By calculating the grain quality of the harvest interval, the average relative error of the total mass measurement in each operation interval is 4.60%, indicating that the small wave decomposition can reduce the noise under the different operating parameters. The effect of sound on flow measurement. The relative error of output is not more than 7.14% according to the output diagram generated by the storage data of the production system and the output of artificial measurement, which verifies the accuracy of drawing the output map.
【学位授予单位】:江苏大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S225.3

【参考文献】

相关期刊论文 前10条

1 马鑫;王鹤;白晓平;;谷物联合收割机测产系统设计及实验研究[J];内蒙古农业大学学报(自然科学版);2016年05期

2 王含蕾;李凯;韩焱;;井下射孔振动信号软件处理平台设计[J];山西电子技术;2015年06期

3 李新成;孙茂真;李民赞;郑立华;张漫;王锡久;;谷物联合收获机自动测产系统产量模型[J];农业机械学报;2015年07期

4 刘碧贞;黄华;祝诗平;向必万;;基于北斗/GPS的谷物收割机作业综合管理系统[J];农业工程学报;2015年10期

5 戴伟;李明峰;吴继忠;;北斗卫星导航系统伪距差分定位技术研究[J];全球定位系统;2015年02期

6 魏新华;张进敏;但志敏;刘成良;;冲量式谷物流量传感器测产信号处理方法[J];农业工程学报;2014年15期

7 怀洋;邵琼玲;路振民;;北斗/GPS混合定位模块UM220应用研究[J];国外电子测量技术;2014年03期

8 李新成;李民赞;王锡九;郑立华;张漫;孙茂真;孙红;;谷物联合收割机远程测产系统开发及降噪试验[J];农业工程学报;2014年02期

9 王芳;季忠;彭承琳;;基于双树复小波变换的心电信号去噪研究[J];仪器仪表学报;2013年05期

10 管公顺;王少恒;成方圆;;不同加载应变率下有机玻璃的压缩破坏与力学行为[J];航空材料学报;2012年06期

相关博士学位论文 前2条

1 李新成;谷物联合收割机产量监测系统优化及远程数据系统开发[D];中国农业大学;2015年

2 张漫;农田谷物产量空间分布信息采集、处理与系统集成技术研究[D];中国农业大学;2003年

相关硕士学位论文 前4条

1 黄振;稀疏多频带信号的亚奈奎斯特采样与重构算法研究[D];云南大学;2015年

2 丛秉华;冲量式谷物测产传感器及试验台研制[D];南京农业大学;2013年

3 陈巡洲;冲量式谷物流量传感器研究[D];上海交通大学;2009年

4 吕瑞兰;小波阈值去噪的性能分析及基于能量元的小波阈值去噪方法研究[D];浙江大学;2003年



本文编号:2098840

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/zaizhiyanjiusheng/2098840.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a9748***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com