光酶诱导桑叶中桑辛素N抗BmNPV机制及其生物合成关键酶的研究
[Abstract]:Bombyx Mori L. (Bombyx mori.) belongs to Lepidoptera, Silkworm moth family, and Bombyx mori nuclear polyhedrosis virus (BmNPV) disease is the most common and serious type of silkworm disease in silkworm rearing, causing enormous economic losses in silkworm industry. Previous studies showed that mulberry leaves induced by UV-B changed the content of secondary metabolites, and the content of morin N increased significantly. It was found for the first time that mulberry leaves induced by UV-B could improve the resistance of silkworm to BmNPV, and it was speculated that Morin N was the main active component. The differential proteomic analysis of midgut proteins of silkworm by label-free technique revealed the mechanism of inducing mulberry leaves and Morin N resistance. The results provided a new treatment scheme for nuclear polyhedrosis of silkworm and laid a foundation for further study. In addition, the key enzymes inducing the biosynthesis of morin N in mulberry leaves were also studied. The results of this study laid a foundation for studying the changes of secondary metabolites in mulberry leaves induced by UV-B. The main contents and results of this paper are as follows: (1) Photoenzyme-induced changes in mulberry leaves. BmNPV is one of the most harmful viruses to silkworm. In the late stage of BmNPV disease, silkworm often exudes pus and contains a large number of polyhedrosis viruses, commonly known as pyosis. These diseases cause death of silkworm and cause huge economic losses in silkworm industry. The experiment of silkworm anti-virus found that feeding UV-B induced mulberry leaves or coating. After mulberry leaves were fed with mulberry leaves containing Morin N, the resistance of silkworm to BmNPV disease was improved and the mortality of Silkworm Infected with BmNPV was decreased. In order to further study the mechanism of resistance, the midgut of silkworm fed with induced mulberry leaves (BUM) and Morin N (BNM) was analyzed by comparative proteomics. The results showed that 413 and 102 differences were identified between BUM and BNM groups, respectively. Protein. Further analysis by bioinformatics showed that inducing mulberry leaves and Morin N could induce more changes in ribosomal protein expression, regulate protein synthesis and DNA repair, up-regulate ATPase expression and down-regulate ATP synthase expression, thus changing the cellular environment to prevent virus shelling into the cell nucleus and resist virus infection. Morin N can also up-regulate the expression of cytochrome oxidase, Ca2+ related protein and programmed cell death protein, thereby promoting cell apoptosis and inhibiting virus proliferation and replication; up-regulate the expression of lipase-1 and serine protease precursor, thereby enhancing the immunity of silkworm and resisting virus invasion; and up-regulate the expression of histone and Rab proteins. The above results reveal the process of inducing resistance of mulberry leaves and Morin N, which is a new therapeutic scheme for improving the survival rate of Silkworm Infected with BmNPV. (2) Study on the key enzyme of inducing Morin N biosynthesis in mulberry leaves. Morus alba L., mulberry, deciduous tree or shrub, is an important medicinal plant, with a variety of pharmacological effects, but also the main source of silkworm food. Morin is an important secondary metabolite in mulberry leaves, with anti-tumor, anti-inflammatory, anti-virus and other activities. At present, the chemical synthesis of morin N has been reported, but the biosynthesis of morin N has not been reported in detail. The important precursor of biosynthesis of morin N was found to be Morin M. A novel Morin oxidative cyclooxygenase was found in the induced mulberry leaves for the first time. It is important to elucidate the biosynthesis of morin N by catalyzing the cyclization of resveratrol to form Morin M. In addition, the activity of morin oxidative cyclase in mulberry leaves induced by UV-B or cultured in dark was increased by enzyme activity reaction. The extraction conditions of morin oxidative cyclase were optimized by single factor experiment and orthogonal experiment. The results showed that the specific activity of the enzyme was the highest when the pH of the extract was 7.5, the ratio of material to liquid was 1:10, the concentration of the extract was 100 mM and the concentration of Na2-EDTA was 10 mM. The results laid a foundation for the isolation and purification of the oxidative cyclooxygenase from mulberry leaves.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S884.51
【相似文献】
相关期刊论文 前10条
1 白兴荣;冉瑞法;董占鹏;董家红;黄平;;云南不同地区BmNPV对家蚕致病力的研究[J];西南农业学报;2010年06期
2 蔡月仙;应霞玲;吴福泉;;家蚕杆状病毒(BmNPV)的应用研究概况[J];广东蚕业;1998年03期
3 葛慈斌,曹阳,钟仰进,肖巧学,黄自然,林广云,龙綮新;化学诱变的BmNPV对家蚕细胞和虫体感染性的初步研究[J];蚕业科学;2000年01期
4 李兵,季平,卫正国,陈玉华,沈卫德;野蚕体内分离的NPV和BmNPV对家蚕和野蚕的交叉感染性研究[J];中国蚕业;2003年04期
5 卓兵,王茜龄,朱勇;催青温度对家蚕抗核型多角体病毒(BmNPV)影响的研究[J];蚕学通讯;2004年02期
6 蔡克亚;陈克平;刘晓勇;姚勤;李军;;家蚕抗BmNPV品系与感性品系血淋巴液蛋白质组的差异分析[J];生物工程学报;2008年02期
7 杨金宏;王代钢;卢从德;孔卫青;;BmNPV DNA解旋酶基因酵母双杂交诱饵载体的构建[J];山东农业大学学报(自然科学版);2010年02期
8 管蕊;唐旭东;徐莉;朱峰;沈中元;;利用酵母双杂交系统筛选BmNPV PE38的互作蛋白[J];蚕业科学;2012年03期
9 钱荷英;高丽;张月华;孙平江;徐安英;;分子标记技术检测家蚕品种抗BmNPV性能[J];江苏农业科学;2013年06期
10 曹阳,徐兴耀,黄自然,钟仰进,谭佩婵;由家蚕蛹─BmNPV系统建立环境诱变剂检测分析模型的初步研究[J];蚕业科学;1997年04期
相关会议论文 前10条
1 ;A Cationic Detergent Enhancing the Replication of Baculovirus and the Activity of BmNPV ie-1 Promoter In vivo and In vitro[A];中国蚕学会第三届青年学术研讨会暨浙江省第二届青年学术论坛——蚕桑分论坛论文集(上册)[C];2001年
2 潘敏慧;吕军;鲁成;;BmNPV的双基因干涉对病毒增殖的影响[A];中国蚕学会第八届暨国家蚕桑产业技术体系家(柞)蚕遗传育种及良种繁育学术研讨会论文集[C];2011年
3 崔颖俊;吴立娜;赵巧玲;裘智勇;沈兴家;唐顺明;郭锡杰;;家蚕幼虫感染BmNPV后血淋巴蛋白质组学分析[A];中国蚕学会第六届青年学术研讨会论文集(2)[C];2009年
4 吴小锋;;家蚕BmNPV的分子生物学研究进展[A];中国蚕学会第七届二次理事会暨学术年会论文集[C];2005年
5 Jun Zhang;Xue-Mei Chen;Chun-Dong Zhang;Qian He;Zhan-Qi Dong;Xiu-Xiu Kuang;Ming-Ya Cao;Xiao-long Dong;Cheng Lu;Min-Hui Pan;;Different susceptibility to BmNPV of two silkworm ovary cell lines were determined by virus's ability to enter cells[A];第十届家(柞)蚕遗传育种及良种繁育学术研讨会论文集[C];2013年
6 徐安英;林昌麒;钱荷英;孙平江;张月华;刘明珠;李龙;;家蚕抗BmNPV新品种简介[A];第十届家(柞)蚕遗传育种及良种繁育学术研讨会论文集[C];2013年
7 吴福泉;杨琼;肖阳;陈列辉;刘新涛;邢东旭;罗国庆;唐翠明;王振江;;累代添食BmNPV的选拔效果初报[A];华东·华中地区第十二次蚕种学术研讨会论文集[C];2010年
8 王娜;唐顺明;裘智勇;丁丽平;赵巧玲;沈兴家;;感染BmNPV家蚕幼虫马氏管蛋白质组的初探[A];中国蚕学会第六届青年学术研讨会论文集(2)[C];2009年
9 孙京臣;金丰良;徐兴耀;谭佩婵;;家蚕核型多角体病毒形态及生物学特性研究[A];中国蚕学会第七次全国代表大会论文集[C];2003年
10 吴金美;R.W.Lim;吴祥甫;Grace Sun;吕鸿声;;家蚕核多角体病毒iap基因的克隆、序列分析及其对哺乳动物细胞核因子-κB的调节作用的研究[A];华东六省一市生物化学与分子生物学会2003年学术交流会论文摘要集[C];2003年
相关博士学位论文 前10条
1 王国宝;家蚕脑的蛋白质组学分析及杆状病毒诱导家蚕行为变化的分子机制研究[D];浙江大学;2015年
2 董小龙;家蚕受体表达增强蛋白BmREEPa的鉴定及其在BmNPV入侵中的功能研究[D];西南大学;2016年
3 周阳;家蚕核型多角体病毒(BmNPV)Bm5的基因分析及利用基因芯片筛选抗BmNPV相关基因[D];江苏大学;2010年
4 薛仁宇;表达dsRNA的转基因家蚕对BmNPV的抗性研究[D];苏州大学;2009年
5 杨章女;BmNPV ORF9和ORF56基因功能分析[D];浙江大学;2008年
6 郝碧芳;家蚕核多角体病毒(BmNPV)orf126基因的功能研究[D];西北农林科技大学;2008年
7 徐海君;BmNPV三个杆状病毒核心基因分析[D];浙江大学;2006年
8 相兴伟;家蚕BmNPV ODV-E56/BmP95的生物学功能及多角体包埋外源蛋白的研究[D];浙江大学;2013年
9 梁湘;家蚕核型多角体病毒分子流行病学调查及宿主特异性研究[D];广西大学;2012年
10 沈兴家;BmNPV和AcMNPV egt 基因启动子特性及家蚕海藻糖酶基因启动子活性的滞育激素调节研究[D];中国农业科学院;2004年
相关硕士学位论文 前10条
1 李兵;野桑蚕体内分离的NPV和BmNPV的比较研究[D];苏州大学;2003年
2 王婷婷;两株对BmNPV侵染差异的家蚕细胞系的全基因组表达谱分析[D];西南大学;2012年
3 王四妹;BmCPV、BmNPV入侵的分子机制初步研究[D];苏州大学;2015年
4 潘彩霞;家蚕BmGBP基因的鉴定及其对BmNPV复制的影响[D];西南大学;2015年
5 夏丹丹;家蚕肠粘蛋白基因的鉴定及功能分析[D];西南大学;2015年
6 付绪亮;家蚕类泛素化修饰蛋白的鉴定及BmNPV早期蛋白PE38与宿主互作蛋白的研究[D];江苏科技大学;2015年
7 程晨;BmNPV-pif-1的序列分析及亚细胞定位分析[D];江苏科技大学;2015年
8 张蕾;家蚕接种BmNPV后体内两种代谢酶活性变化及家蚕血淋巴金属蛋白的初步分离检测[D];江苏科技大学;2015年
9 张曦;BmNPV Orf98a和Orf99基因的功能及与p74基因重叠sORF的确认[D];苏州大学;2015年
10 陶柳性;BmNPV感染导致的聚集物(体)的研究[D];江苏大学;2015年
,本文编号:2217823
本文链接:https://www.wllwen.com/shoufeilunwen/zaizhiyanjiusheng/2217823.html