水果组织光学特性参数反演模型及其应用研究
[Abstract]:The optical properties of fruit tissue are important parameters reflecting the chemical composition, physical structure, physiological and pathological state of fruit tissue. The measurement of the optical characteristic parameters of fruit tissue, for studying the imaging law of the inner structure of the tissue and the characteristics of photon transmission, analyzing the histochemical characteristics and physical structure, It is of great significance to establish internal quality (state) detection and evaluation model. In this paper, the transmission of light in single layer fruit tissue is simulated based on MC, and the inverse solution of optical characteristic parameters is realized. Secondly, the hyperspectral scattering images of tissue simulated fluid are collected by hyperspectral scattering imaging system, and the inversion solution of the optical characteristic parameters of tissue simulation fluid is realized by combining with the nonlinear inversion regression model. On the basis of this study, the absorption and scattering of apple tissue were studied, and the prediction model between the spectral characteristics and the hardness and soluble solid content of apple was established. The main work of this paper is as follows: 1. In view of the large errors between the diffuse model and the MC simulation near the light source, an iterative inversion based method for estimating the mean free path of transport and determining the minimum distance between the light source and the detector is proposed. The method adaptively evaluates the mean free path of transport by using iterative estimation idea and changes the minimum distance between light source and detector to obtain a more reasonable data interval for the inversion of optical characteristic parameters. The results show that compared with the traditional empirical estimation method, the iterative inversion method can reduce the near-light source error and improve the retrieval accuracy of the optical characteristic parameters of fruit tissue. Under the condition of no noise, the average relative error of absorption coefficient 渭 _ a inversion is 7.17 and the average relative error of effective scattering coefficient 渭 _ s inversion is 5.73. In the case of certain SNR noise, the iterative inversion method can still obtain higher inversion accuracy of optical characteristic parameters. 2. Due to the various limitations of the optical approximation model, the prediction models of the optical characteristic parameters 渭 _ a and 渭 _ s are established by using the machine learning method. The hyperspectral scattering imaging system based on steady-state spatial resolution technique is used to obtain the scattering images in the 530-900nm band range of tissue simulation fluid. The nonlinear inverse regression model of optical parameters is established by combining Fourier decomposition and least squares support vector machine (LS-SVM) algorithm. The results show that the method of Fourier decomposition and least squares support vector machine based on experimental data can obtain better prediction results. The average relative errors of 渭 _ a and 渭 _ s inversion are 11.03% and 7.16.3 respectively. The (SSC) prediction model of apple hardness and soluble solid content was studied. The online hyperspectral scattering imaging system is used to collect the scattering images of 'Golden Delicious, (GD),' Jonagold, (JG) and 'Delicious' (RD) apple samples in 500-1000nm band range from 2009 to 2010. The hyperspectral scattering images were analyzed and extracted by optical characteristic parameter method, moment method and Fourier decomposition method. The prediction model of apple hardness and SSC was established by combining partial least squares and least squares support vector machine. The results show that the fused spectral features (optical parameters 渭 _ a and 渭 _ s, zero-order moments and first-order moments, Fourier coefficients) can provide more information about the scattering curves than the single spectral features. Thus, the prediction accuracy of apple hardness and SSC is improved.
【学位授予单位】:江南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S66;TP391.41
【参考文献】
相关期刊论文 前10条
1 梁辰;李成海;周来恩;;PCA-BP神经网络入侵检测方法[J];空军工程大学学报(自然科学版);2016年06期
2 何春柳;朱启兵;黄敏;;基于矩变换的生物组织光学特性参量反演[J];光子学报;2015年02期
3 孙梅;陈兴海;张恒;陈海霞;;高光谱成像技术的苹果品质无损检测[J];红外与激光工程;2014年04期
4 张令标;何建国;刘贵珊;王松磊;贺晓光;王伟;;基于可见/近红外高光谱成像技术的番茄表面农药残留无损检测[J];食品与机械;2014年01期
5 吴龙国;何建国;刘贵珊;贺晓光;王伟;王松磊;李丹;;基于近红外高光谱成像技术的长枣含水量无损检测[J];光电子.激光;2014年01期
6 章海亮;高俊峰;何勇;;基于高光谱成像技术的柑橘缺陷无损检测[J];农业机械学报;2013年09期
7 彭勇;陈俞强;严文杰;;基于改进BP网络模型的公路流量预测[J];计算机技术与发展;2012年08期
8 张小娟;周青军;杨薇;;光源附近空间分辨漫反射的SP_3研究[J];物理学报;2012年03期
9 陈荣;陈韶华;刘江海;;强散射生物组织光学特性参数的重构[J];湖北大学学报(自然科学版);2006年01期
10 应义斌,刘燕德;水果内部品质光特性无损检测研究及应用[J];浙江大学学报(农业与生命科学版);2003年02期
相关博士学位论文 前2条
1 许棠;生物组织中的光传输及生物组织光学特性参数测量的研究[D];南开大学;2004年
2 张连顺;光与生物组织的相互作用及生物组织光学特性参数测量[D];南开大学;2003年
相关硕士学位论文 前4条
1 关济雨;基于光学特性的水果损伤敏感性预测评估[D];江南大学;2016年
2 何春柳;基于高光谱散射图像的水果组织光学特性参数反演[D];江南大学;2015年
3 赵鑫;光谱图像技术在水果内部品质检测中的研究[D];江南大学;2014年
4 杨磊;梨子内在品质的近红外漫反射光谱无损检测技术研究[D];南京农业大学;2008年
,本文编号:2315776
本文链接:https://www.wllwen.com/shoufeilunwen/zaizhiyanjiusheng/2315776.html