海洋酸化及变暖对刺参主要生理生态过程和免疫的影响
[Abstract]:The effects of ocean acidification and warming on (Apostichopus japonicus), an important economic species and ecological key species in the shallow sea ecosystem of East Asia, were studied in this paper. Four groups of conditions were set up: control group, heating group and acidified combined acidification group. The effects of ocean acidification and warming on the early development of sea cucumber, and the effects of ocean acidification and warming on the growth and energy budget of sea cucumber were studied. Effects of ocean acidification and warming on the immunity of sea cucumber. The results are as follows: 1. The results of early development study showed that the fertilization rate of the acidified group decreased significantly, but there was no significant difference between the warming group and the acidified group compared with the control group. The growth rate of embryo / larva in the acidified group was the slowest and the individual was smaller. The growth rate of the larvae in the warming group and acidified warming group was significantly faster than that in the control group, and the larva was larger in size. The results show that warming can promote the development of larvae, while acidification inhibits fertilization and early development of larvae, but the negative effects of acidification can be counteracted by warming. It was indicated that temperature rather than pH was the main factor affecting the early development of sea cucumber. 2. The results of the study on the growth and energy budget of sea cucumber showed that the growth of sea cucumber was not affected, and the specific growth rate and feeding rate of sea cucumber were not affected. There was no significant difference in fecal excrement rate and feed conversion efficiency between the two groups. The degree of individual dispersion was lower than that of the control group, and the apparent digestibility was significantly lower than that of the control group. In the acidified group, the individual was the smallest, the specific growth rate was the lowest, and the individual weight dispersion was larger, but the feeding rate, excrement rate, apparent digestibility and feed conversion efficiency were not affected. There was no significant difference in specific growth rate, apparent digestibility and feed conversion rate, but the feeding rate and fecal excretion rate of the acidified warming group were significantly lower than those of the control group, and the dispersion degree of individual body weight was lower than that of the control group. In terms of energy intake energy growth energy fecal energy excretion energy and respiratory energy of the heating group were not significantly different from those of the control group. The excretion energy of acidified group increased significantly, and the proportion of excretion energy to ingested energy also increased significantly. There was no significant difference in feeding energy, respiratory energy, growth energy, fecal energy and excretion energy between the acidified warming group and the control group, and the distribution pattern of intake energy was not affected. The results showed that warming had no significant effect on the growth and energy budget of sea cucumber, but acidification inhibited the growth of sea cucumber and changed the energy distribution pattern. The combined effects of acidification and warming could counteract the negative effects of acidification. The study on the immunity of sea cucumber mainly includes the antioxidation ability (SOD,CAT and GSH-Px) and lysozyme content in the body cavity of sea cucumber. The results showed that under the conditions of heating acidification and acidizing the immune indexes of the body cavity fluid of Acanthopsis japonicus had no significant change compared with the control group. The results showed that there was no difference in several immune indexes (SOD,CAT,GSH-Px and lysozyme) between the body and the control group because of the adaptability of the body when the sea cucumber was exposed to the stress environment for a long time. But whether the immunity of sea cucumber is affected or not remains to be further studied.
【学位授予单位】:大连海洋大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S917.4
【相似文献】
相关期刊论文 前10条
1 ;海洋酸化速度之快“史无前例”[J];农村实用科技信息;2010年06期
2 许冬兰;;海洋酸化及其相关经济学研究国际动态[J];中国渔业经济;2012年02期
3 黄建平;;海洋酸化及其影响[J];农业与技术;2014年03期
4 Ivy;;警惕海洋酸化[J];绿色中国;2013年18期
5 ;大型海藻可以帮助解决海洋酸化问题[J];渔业现代化;2011年01期
6 ;渔业科技前沿[J];渔业信息与战略;2012年02期
7 丁兆坤;刘伟茹;许友卿;;海洋酸化对海洋生物大分子影响的研究进展[J];中国水产科学;2013年06期
8 汪思茹;殷克东;蔡卫君;王东晓;;海洋酸化生态学研究进展[J];生态学报;2012年18期
9 王有基;李丽莎;李琼珍;吕为群;;海洋酸化和全球变暖对贝类生理生态的影响研究进展[J];生态学报;2014年13期
10 杨林林;;英国:海洋酸化导致贝类进化[J];渔业信息与战略;2012年04期
相关会议论文 前1条
1 赵信国;柴雪良;肖国强;孙长森;刘广绪;;海洋酸化对滩涂贝类受精的影响研究[A];中国海洋湖沼学会水环境分会中国环境科学学会海洋环境保护专业委员会2012年学术年会论文摘要集[C];2012年
相关重要报纸文章 前10条
1 记者 李学梅;专家称海洋酸化速度惊人,已经“生病了”[N];新华每日电讯;2008年
2 本报记者 张晓丽;无法承受的海洋之“酸”[N];辽宁日报;2010年
3 姜晨怡;海洋正在加速“变酸”[N];中国气象报;2011年
4 美文;温室效应致海洋酸化危害全球贝类[N];中国渔业报;2011年
5 何胜楠;保护海洋资源控制海洋酸化[N];中国渔业报;2012年
6 记者 赵亚平;第一个海洋酸度监测装置下水[N];科技日报;2007年
7 本报记者 董子凡;科学家呼吁:减少温室气体排放遏制海洋酸化[N];科技日报;2009年
8 记者 张之简;海洋酸化日益严重,珊瑚礁可能“缩水”[N];新华每日电讯;2009年
9 何晨编译;二氧化碳排放加快海洋酸化速度[N];中国气象报;2010年
10 黄X;海洋酸化严重影响珊瑚等生物[N];中国渔业报;2011年
相关博士学位论文 前3条
1 赵信国;海洋酸化对厚壳贻贝物理与行为防御的影响研究[D];浙江大学;2017年
2 王秀丹;长牡蛎对海洋酸化的响应与适应机制研究[D];中国科学院大学(中国科学院海洋研究所);2017年
3 丁茜;用于海洋酸化/海底热液等海洋环境的微电极的研制与应用[D];浙江大学;2014年
相关硕士学位论文 前10条
1 卢羽洁;海洋酸化及变暖对刺参主要生理生态过程和免疫的影响[D];大连海洋大学;2017年
2 翟奥博;复合微生态制剂对刺参幼参生长、水质及免疫相关酶的影响[D];大连海洋大学;2017年
3 肖钲霖;楚科奇海与北欧海海洋酸化研究[D];国家海洋局第三海洋研究所;2015年
4 栾学泉;海洋酸化和温度对海带光合作用及氮素代谢的影响[D];青岛科技大学;2015年
5 刘丹;治理海洋酸化问题的法律分析[D];山东大学;2016年
6 隋琪;海洋酸化条件下纳米TiO_2颗粒对蛋白核小球藻的毒性效应[D];上海海洋大学;2016年
7 蒋国萍;海洋酸化条件下重金属Cd~(2+)、Hg~(2+)对斧文蛤生态毒理效应研究[D];上海海洋大学;2016年
8 濮菲;海洋酸化对福建牡蛎幼体基因表达的影响[D];厦门大学;2014年
9 汪燕敏;南极普里兹湾海—气CO_2通量与海洋酸化研究[D];国家海洋局第三海洋研究所;2017年
10 韦晓慧;海洋酸化条件下铜、镉对日本虎斑猛水蚤(Tigriopus japonicus)发育、繁殖和超氧化物歧化酶活性的影响[D];中国海洋大学;2013年
,本文编号:2371850
本文链接:https://www.wllwen.com/shoufeilunwen/zaizhiyanjiusheng/2371850.html