borel域 的翻译结果
In this paper, we obtained a new method of generating finite or countably infinite dimensional product σ —algebra, and proved that countably infinite dimensional Borel field has the cardinality of the continuum.
本文得到了有限及可数无限维乘积σ—代数的一种新的生成方法,并证明了可数无限维Borel域具有连续统的势.
For metric space X, by M(X) we mean the set of Borel probability measures over X with bounded support, and by R(X) the set of Radon measures in M(X).M(X), R(X) are endowed with Hutchison metric. In this paper, the following results weregot: R(X) is complete if and only if X is complete and bounded. In case that X is seperable,then M(X) is complete if and only if X is complete and bounded.
距离空间X上,以M(X)记定义在X的Borel域上的具有有界支撑的概率测度全体,R(X)记M(X)中所有Radon测度,M(X),R(X)均赋予Hutchison度量.本文得到:R(X)完备当且仅当X完备且有界.若X可分,则:M(X)完备当且仅当X完备且有界.
Let X be a Hausdorff topological space and m be the finite measure on its Borel σ-field B(X). Let {Tt}t≥0 be the sub-Markov semigroup on L~P(X, m) (p > 1) and F_(r,p). be the Sobolev space generated by {Tt}t≥0 Let Cap_(r,p).(.) (r > 0,p > 1) be the capacity associated with {Tt}t≥0 With some conditions we prove that for any positive functional on F_(r.p)~* the dual space of F_(r,p)., there exists an unique measure μ■ on B(X) satisfying Furthermore for any B ∈ B(X), Cap(r,p).(B) = 0 if and only if μ■(B)...
设X是 Hausdorff拓扑空间,m是其 Borel域 B(X)上的有限测度.{T_t}t≥0。是 L~p(X;m)(p>1)上的次马氏半群.F_(r,,p)。是由该半群生成的Sobolev空间.Cap_(r,p)(r> 0;p>1)是相应的容度,本文在一定条件下证明了对任意F_(r,p)共轭空间F_(r,p)~*中的正泛函■, 存在X上唯一的σ-有限测度μ■,使得_(F(r,p))〈u,■〉_(F(r,p)*)=∫_x~u(x)μ■(dx),u∈F_(r,p), 并且对任意B∈B(X)Cap~(r,p)(B)=0的充要条件是μ■(B)=0,■∈F_(r,p)~*。
 
本文编号:27454
本文链接:https://www.wllwen.com/wenshubaike/jyzy/27454.html