基于数据挖掘的银行客户流失模型分析研究
[Abstract]:Economic globalization and the implementation of e-commerce make commercial banks face more fierce competition, especially due to the globalization of competition for customer resources and the increasingly fierce competition for high-value customers, which aggravates the customer disturbance. The loss of customers is serious, the cost of customer acquisition is increased, the risk of bank operation is increased, and the competitiveness is greatly impacted. The study found that in the banking industry, customer retention is key to the success of the CRM strategy, which is profitable only when the customer is maintained over time, and that successful customer retention lowers the bank's search for new ones. Demand from customers with potential risks and focus on building relationships and meeting the needs of existing customers. Therefore, in the face of the current market conditions, commercial banks must develop new customers, at the same time, proceed with customer maintenance research. Maintaining existing customers by commercial banks can increase the amount of capital gathered while saving the advertising and introduction costs necessary to induce customers to enter the bank, thereby generating more cash flow and profits. The success of bank customers depends mainly on the analysis and evaluation of bank customer turnover, so as to predict the possibility of some customers losing ahead of time, and then adopt the market strategy. And the unprecedented individual level of customer data makes the database of the bank more huge and complex, data mining technology can be competent to deal with massive data, will play a huge role in the analysis of customer churn in the banking industry. Discover key information about customer churn from the vast amount of ordinary business data to help banks retain the most valuable resource-customers. Under this background, this paper applies marketing, management decision theory and method, data mining technology and statistics technology, and makes use of the theory and method of marketing, management decision-making, data mining and statistics. This paper makes a systematic study on customer churn, which is the core part of customer relationship management in commercial banks, which has a wide practical background and development prospects. First of all, on the basis of investigating and analyzing the variables used in other related studies, the factors closely related to customer loss are obtained: the length of bank service, the age, the main channel of contact with the bank, and whether to purchase certain products of the bank. Has the bank various business quantity and so on the 13 static customer information which is closely related to the bank customer loss; At the same time, the factors of time series, that is, the transaction behavior of bank customers in the year before the survey period, are introduced. At last, these two factors are regarded as input variables of customer churn model, and the explanatory variables of the input model reach more than 200. Two kinds of data mining software, Weka and SAS Enterprise Miner, are used to establish the decision tree forecasting model and Logistic regression forecasting model of customer churn in a commercial bank, respectively. Finally, the forecasting effect of the established customer churn prediction model is compared and analyzed. Identify the characteristics that commercial banks are about to lose customers. The research results maintain the planning of commercial bank design bank customers, maintain valuable customers, and improve the ability of commercial banks to make decision-making based on facts. It is of great theoretical value and practical significance to increase customers' contribution to bank profits by maintaining long-term stable relationship with valuable customers and to help banks gain real competitive advantage.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2008
【分类号】:F830.4;F224
【相似文献】
相关期刊论文 前10条
1 汪楠;成鹰;崔婀娜;;数据挖掘技术怎么用[J];经营与管理;2007年07期
2 余云飞;;数据挖掘与科学决策[J];决策与信息;2008年09期
3 肖娟;叶枫;;利用数据挖掘管理客户关系[J];经济管理;2003年01期
4 杨华;;浅析数据挖掘在企业信息化管理中应用现状和对策[J];江西金融职工大学学报;2007年05期
5 尚锐;陈超;;数据挖掘:计算机审计的新思路[J];审计月刊;2006年22期
6 商锦博;;探索数据挖掘在保险公司中的应用[J];商场现代化;2007年19期
7 张永宾;;DM在分析客户忠诚度的应用[J];商场现代化;2008年34期
8 刘忠宝;尤忠彬;;数据挖掘在信用卡客户营销中的运用[J];中国信用卡;2008年04期
9 宋艳;张炎欣;;数据挖掘技术在CRM中的应用[J];企业导报;2009年04期
10 丁文捷;;基于量体数据挖掘的服装投产号型决策[J];统计与决策;2007年17期
相关会议论文 前10条
1 马杰;胡海峰;马玉书;;基于人工神经网络的数据挖掘工具[A];第十七届全国数据库学术会议论文集(技术报告篇)[C];2000年
2 马杰;刘月田;胡海峰;马玉书;;具有多种神经网络模型的数据挖掘工具[A];第十九届全国数据库学术会议论文集(技术报告篇)[C];2002年
3 杨庆跃;杨冬青;唐世渭;王腾蛟;;移动通信客户流失分析中的数据预处理方法研究[A];第二十二届中国数据库学术会议论文集(技术报告篇)[C];2005年
4 邵华;万家华;王剑虎;何耀东;张霞;;一个以用户为中心的数据挖掘工具:Open Miner[A];第十七届全国数据库学术会议论文集(研究报告篇)[C];2000年
5 徐进;;数据挖掘在客户关系管理中的应用[A];2007中国科协年会——通信与信息发展高层论坛论文集[C];2007年
6 陈震;陈维默;;浅谈数据挖掘技术[A];福建省科协第五届学术年会数字化制造及其它先进制造技术专题学术年会论文集[C];2005年
7 段军晓;;数据挖掘技术在民航快递市场营销中的应用[A];第六届中国科学家论坛论文汇编[C];2007年
8 连建勇;;基于数据挖掘的电信客户流失分析[A];2007中国科协年会——通信与信息发展高层论坛论文集[C];2007年
9 崔海莉;袁兆山;;客户关系管理中的关联规则挖掘技术[A];计算机技术与应用进展——全国第17届计算机科学与技术应用(CACIS)学术会议论文集(上册)[C];2006年
10 李忍;孙晶;刘令君;;一个体育比赛技战术分析数据挖掘工具的设计与实现[A];2007通信理论与技术新发展——第十二届全国青年通信学术会议论文集(上册)[C];2007年
相关重要报纸文章 前10条
1 刘庆;关于数据挖掘工具的讨论[N];网络世界;2006年
2 张少荣;除了技术 还需要什么[N];金融时报;2006年
3 毛江华;6030亿元 客户流失威胁中国企业发展[N];计算机世界;2008年
4 汪雯;如何进行数据挖掘[N];金融时报;2006年
5 袁闻;数据挖掘和在线分析处理[N];金融时报;2006年
6 记者 王璐;数据挖掘 提升银行核心竞争力[N];金融时报;2006年
7 陈金波;数据挖掘:提升电信CRM水平的助推器[N];人民邮电;2007年
8 梅静彦;数据挖掘技术在美国银行的应用[N];金融时报;2006年
9 NCR(中国)有限公司数据仓库事业部 张新宇;开放标准提升数据挖掘效率[N];通信产业报;2006年
10 高芸;数据挖掘技术:整合数据库信息的利器[N];中国城乡金融报;2005年
相关博士学位论文 前10条
1 艾丹祥;基于数据挖掘的客户智能研究[D];武汉大学;2007年
2 徐雪琪;基于统计视角的数据挖掘研究[D];浙江工商大学;2007年
3 晏峻峰;基于数据挖掘技术的证素辨证方法研究[D];湖南中医药大学;2007年
4 李荣;生物信息数据挖掘若干关键问题研究与应用[D];复旦大学;2004年
5 刘君强;海量数据挖掘技术研究[D];浙江大学;2003年
6 史e,
本文编号:2440406
本文链接:https://www.wllwen.com/wenyilunwen/guanggaoshejilunwen/2440406.html