“城-郊”绿地木本植被群落碳储量影响因素的差异性分析
本文选题:上海 切入点:“城-郊”样带 出处:《上海师范大学》2017年硕士论文
【摘要】:城市绿地作为城市生态系统的重要组成部分,具有环境、经济和社会等方面的多重效益,近年来,许多国家将高效发挥城市绿地生态系统服务功能作为城市应对气候变化的重要措施。而城市化进程的加剧对城市生态系统的结构、功能造成很大影响。当前,针对城区和郊区间城市绿地木本植被碳储量影响因素差异的定量分析研究较少的现状,本文以上海“城-郊”样带为例,基于地理信息技术,采用景观格局分析和数理统计方法,在量化“城-郊”样带的基础上,分析“城-郊”样带上植被的组成特征;并借助路径分析(Path Analysis)构建城市绿地木本植被碳储量的影响要素模型,对不同城市化程度下的城市绿地木本植被碳储量与自然因素(植被密度、植被覆盖度、植被物种多样性)和社会要素(土地利用、UI值、城镇人口密度、距市中心距离)间的直接或间接影响关系及其差异进行分析验证。本文的主要结论如下:(1)基于多元线性回归分析,对研究区域的城、郊进行界定。结果表明:“城-郊”样带表现出一定的空间分异特征。此空间分异特征与上海行政区域的功能定位和城市的发展历史相一致,可为城市绿地的规划和管理提供科学依据。(2)基于野外调查,记录乔木和灌木共50科74属90种,城区、郊区的植被组成和结构方面存在差异。两区域植被物种数量和乔灌比例具有明显差异,呈现出城区的物种总数量高于郊区的现状。城、郊两区域重要值排前10位的乔木和灌木物种的相似性持平;从乔木树种重要值的数值来看,香樟在城、郊两区都居首位,且占据绝对优势。在城、郊两区域中常绿和落叶物种比例差异不大,皆表现为落叶物种所占比例稍高于常绿物种所占比例。四个物种多样性指数即均匀度指数(E)、丰富度指数(S)、Simpson指数(D)和Shannon-Wiener指数(H)的平均值在各区域的变化趋势皆为城区郊区,表明城区和郊区的物种多样性间存在差异,且此种差异是人类经营活动所产生的结果。另外,郊区的植被密度略高于城区,但植被覆盖度呈现出城区大于郊区。(3)借助路径分析(Path Analysis),构建城市绿地木本植被碳储量的影响要素模型,对城区和郊区城市绿地木本植被碳储量的各影响因子进行差异分析。结果表明:两区域的城市绿地木本植被碳储量影响因素对城市绿地木本植被碳储量的影响路径和影响显著性间存在差异。两区域皆表现出自然因素对城市绿地木本植被碳储量的贡献高于社会因素,自然因素中植被覆盖度起到主导作用(P0.01),而植被密度与城市绿地木本植被碳储量之间的相关性不显著(P0.05);植物群落物种多样性与城市绿地木本植被碳储量间并没有体现出相关关系。社会经济因素中城市化程度UI值、城镇人口密度与城市绿地木本植被碳储量间并没有体现出相关关系。城区土地利用与城市绿地木本植被碳储量间无相关路径存在,而在郊区此影响路径却表现为显著正相关(P0.01)。城区中距市中心距离通过植被覆盖度这一中间变量对城市绿地木本植被碳储量产生间接的正向影响(P0.01),而在郊区距市中心距离与城市绿地木本植被碳储量间相关性不显著(P0.05)。为有效提高城市绿地储碳能力,充分发挥其生态价值,根据城区和郊区的不同碳储量影响机制,因地制宜制定合理的规划和管理计划。
[Abstract]:As an important part of city green space, city ecological system has multiple benefits, environmental, economic and social aspects in recent years, many countries will play an important measure, city green space ecosystem services as city climate change. And the city in the process of increasing structure of city ecosystem, influence function according to the city and the suburbs. The city green woody vegetation carbon storage interval influence quantitative analysis of differences in the factors of less, this paper takes Shanghai "city county" as an example of geographic information technology based on the analysis of landscape pattern and the method of mathematical statistics, in the "city county" quantitative transect based on and component analysis of the urban suburban "transect of vegetation; and by means of path analysis (Path Analysis) effects the construction of city green woody vegetation carbon storage elements model in different city City green carbon reserves and natural factors of the woody vegetation (vegetation density, vegetation coverage, vegetation species diversity) and social factors (UI value, land use, urban population density, the distance from the city center) directly or indirectly affect the relationship and differences in analysis. The main conclusions of this paper are as follows: (1) based on multiple linear regression analysis, the study area of the city, suburbs are defined. The results show that: "city county" transect showed differential characteristics of the space. Consistent with differentiation characteristics and development history of Shanghai administrative region of the space function and the city, can provide a scientific basis for planning and the management of city greenbelt. (2) based on the field investigation, the record of trees and shrubs were 50 families 74 genera and 90 species, the existing city, suburban vegetation composition and structure difference. Two regional vegetation species number and proportion of Qiao Guan have obvious differences, a The total number of species is higher than that of urban suburban status. The city, the important value of the top 10 trees and shrubs species similarity flat suburb two areas; from the numerical importance value of tree species, camphor in the city, the suburb two district in the first place, and occupy absolute advantage. In the City, evergreen and deciduous the species differences in the proportion of the suburb two area is small, showed the proportion of deciduous species was slightly higher than the proportion of evergreen species. Four species diversity index evenness index (E), richness index (S), Simpson index (D) and Shannon-Wiener index (H) of the average change in each region the trend are the city suburbs, urban and suburban areas showed differences between species diversity, and this difference is the result of human activities. In addition, suburban vegetation density is slightly higher than the city, but the vegetation coverage showed a large city in the suburb. (3) by means of path analysis (Path Analysis), construction of city green woody vegetation carbon storage element model, analyses the differences between the factors of urban and suburban city green woody vegetation carbon storage. The results showed that the factors affecting city green woody vegetation carbon storage two area effect on city green woody vegetation carbon storage path and significant influence between there are two regional differences. Show the contribution of natural factors on city green woody vegetation carbon storage was higher than that of the social factors, natural factors, vegetation coverage plays a dominant role (P0.01), but there was no significant correlation between vegetation density and city green woody vegetation carbon storage (P0.05); plant species diversity and green city woody vegetation carbon storage and does not reflect the relationship between social and economic factors. In the city of UI, the urban population density and city green woody vegetation carbon storage The amount does not reflect the relationship between urban land use and city. Woody vegetation carbon reserves no path exists, and the influence of path in the suburbs has showed significant positive correlation (P0.01). The distance from the city center in the city through the vegetation coverage of the intermediate variables have indirect positive effects on city green woody vegetation carbon storage (P0.01), and the distance from the city center in the suburbs and city green woody vegetation carbon reserves no significant correlation between (P0.05). In order to effectively improve the city green carbon storage capacity, give full play to its ecological value, according to the different carbon storage effect mechanism of city and suburb areas, formulate reasonable planning and management plan.
【学位授予单位】:上海师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S718.5
【参考文献】
相关期刊论文 前10条
1 王紫君;申广荣;朱峗;韩玉洁;刘春江;薛春燕;;上海城市森林叶生物量遥感监测[J];生态学杂志;2016年05期
2 王紫君;申广荣;朱峗;韩玉洁;刘春江;王哲;薛春燕;;基于遥感和空间分析的上海城市森林生物量分布特征[J];植物生态学报;2016年04期
3 赵倩;赵敏;;城市化过程及其绿地储碳研究——以上海“城-郊-乡”样带为例[J];长江流域资源与环境;2015年04期
4 周健;肖荣波;庄长伟;邓一荣;;城市森林碳汇及其抵消能源碳排放效果——以广州为例[J];生态学报;2013年18期
5 王大睿;;厦门城市森林碳储量和碳密度时空变化特征[J];福建林学院学报;2013年01期
6 王祖华;刘红梅;关庆伟;王晓杰;郝俊鹏;凌宁;石聪;;南京城市森林生态系统的碳储量和碳密度[J];南京林业大学学报(自然科学版);2011年04期
7 徐飞;刘为华;任文玲;仲启铖;张桂莲;王开运;;上海城市森林群落结构对固碳能力的影响[J];生态学杂志;2010年03期
8 刘常富;何兴元;陈玮;赵桂玲;李玲;徐文铎;;基于QuickBird和CITYgreen的沈阳城市森林效益评价[J];应用生态学报;2008年09期
9 张静;张庆费;陶务安;李明胜;;上海公园绿地植物群落调查与群落景观优化调整研究[J];中国农学通报;2007年06期
10 达良俊,杨同辉,宋永昌;上海城市生态分区与城市森林布局研究[J];林业科学;2004年04期
相关博士学位论文 前3条
1 张丹;城市化背景下城市森林结构与碳储量时空变化研究[D];中国科学院研究生院(东北地理与农业生态研究所);2015年
2 王日明;怀化市城市绿地系统植物多样性研究[D];湖南农业大学;2013年
3 李莹莹;城镇绿色空间时空演变及其生态环境效应研究[D];复旦大学;2012年
相关硕士学位论文 前5条
1 梁兴军;济南市森林植被生物量和碳储量调查研究[D];山东师范大学;2015年
2 郭智明;长沙市城市生态系统碳通量时间变化与影响因子研究[D];中南林业科技大学;2015年
3 赵倩;“城—郊—乡”绿地群落组成结构与其储碳功能的关系研究[D];上海师范大学;2014年
4 邱希阳;基于低碳理念下的城市绿地设计研究[D];浙江农林大学;2011年
5 王绪平;上海市公园绿地的生态学评价与植物配置特征分析[D];华东师范大学;2007年
,本文编号:1677533
本文链接:https://www.wllwen.com/wenyilunwen/huanjingshejilunwen/1677533.html