不同植物人工湿地脱氮效果及微生物多样性研究
本文选题:湿地 + 植物 ; 参考:《山东农业大学》2017年硕士论文
【摘要】:湿地广泛分布在世界各地,被喻为"地球之肾"。湿地是自然界最富生物多样性和生态功能最高的生态系统。湿地为人类的生产、生活与休闲娱乐提供许多资源,是人类最重要的生存环境,也是人类最重要的环境资本之一。湿地在抵御与调节洪水、控制与降解污染物等方面具有举足轻重的作用。湿地还是众多野生动植物、尤其是鸟类的栖息地。人工湿地是近些年发展起来的一种污水处理技术。它将污水处理与环境生态有机地结合起来,在有效处理污水的同时也能起到美化环境的作用。人工湿地可以创造生态景观,也带来环境效益及经济效益。自人工湿地发展以来,以其独特的优势受到人们的广泛关注,并广泛应用于治理生活污水、工业废水和石油开采废水等领域。由于生活污水直接排放到江河湖海中,导致受纳水体发生水体富营养化问题已经成为当今社会一个严峻的水环境问题,从水环境中高效脱氮已成为现今水环境领域的研究热点(VymazalJ.,2002;DingYietal.,2012)。迄今,治理生活污水方法多样,其中人工湿地因其运行成本低廉,净化效果较好,且具观赏性而受到越来越多的人重视。人工湿地是通过基质吸附、沉淀、转化的途径将废水中的氮去除,从而降低水体富营养化现象的发生。研究人工湿地对污水中氮去除的效果,可为提高人工湿地脱氮效率提供理论支持。本论文通过对泰安市泮河人工湿地区的调查,对不同植物湿地做了进一步的研究,通过试验可以得出以下结论:(1)秋季湿地的污染物浓度基本低于冬季的污染物浓度。秋季对污染物的去除率基本均高于冬季污染物的去除率。对总氮去除率最高的植物是水菖蒲湿地,秋季去除率达49%,冬季可达37%,冬季香蒲湿地的去除效果最差,为16%,其它在200%~300%之间。秋季对氨氮(NH3-N)去除较好的植物湿地是再力花和水葱湿地,去除效率分别为34.4%和32.6%,冬季对氨氮(NH3-N)去除较好的植物湿地是香蒲湿地,去除率达22%。秋季对硝态氮(NO3--N)去除较好的植物湿地是黄菖蒲、千屈菜湿地,去除率分别为76.7%、73.3%,其它湿地的去除效率在19%~37%之间;冬季对硝态氮(NO3--N)去除较好的植物湿地是水葱湿地,去除效率为26.3%,且各湿地冬季对硝态氮(NO3--N)的去除效率基本一致。试验中各系统均有NO2--N检出,但含量均较低,浓度均在0.1mg/L以下,变化范围很小。(2)通过传统培养方法测定3种微生物数量关系为氨化细菌反硝化细菌亚硝化细菌,秋季湿地系统的氨化细菌、亚硝化细菌、反硝化细菌数量基本均高于冬季。水葱、水菖蒲、茭白、千屈菜湿地系统秋季氨化细菌数量显著高于冬季,香蒲湿地系统冬季氨化细菌数量略高于秋季,黄菖蒲和再力花湿地系统秋冬季氨化细菌数量基本相同。除香蒲湿地外,其它湿地系统秋季亚硝化菌数量均显著高于冬季。秋季,再力花湿地系统亚硝化细菌数量最高;冬季,香蒲湿地系统亚硝化细菌数量最高。除水菖蒲、再力花湿地系统外,其它湿地系统秋季反硝化菌数量均高于冬季。秋季,黄菖蒲湿地反硝化细菌数量最高;冬季,水葱湿地反硝化细菌数量最高。各个植物湿地的亚硝化细菌数量与氨氮(NH3-N)的去除率之间呈现较好的相关性(秋季R=0.955,冬季R=0.991)。反硝化细菌数量与硝态氮(NO3--N)的去除率之间呈现较好的相关性。(3)秋冬季7个湿地单元14个样品中的ACE、Chao1指数有所不同,但是差异并不大,秋季样品的ACE、Chao1指数的最大值均出现在茭白湿地,冬季样品的ACE、Chao1指数的最大值均出现在水菖蒲湿地,这与OTU数的变化趋势是一致的。不同植物湿地的样品主要细菌群落结构存在差异,但差异不大。变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、酸杆菌门(Acidobacteria)、拟杆菌门(Bacteroidetes)、放线菌门(Actinobacteria)、浮霉菌门(Planctomycetes)、蓝细菌(Cyanobacteria)、芽单胞菌门(Gemmatimonadetes)、疣微菌门(Verrucomicrobia),分别占到细菌总量的38.2%、17.1%、11.2%、7.4%、5.5%、5.3%、4.3%、3.3%、1.4%,其中属于变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、酸杆菌门(Acidobacteria)、拟杆菌门(Bacteroidetes)的序列总和占了全部序列的73.9%,这些微生物是本试验中的优势菌群。在属水平上优势菌群有Ramlibacter.3%~1.9%(0.8%)、硝化螺旋菌属(Nitrospira)0.2%~1.8%(0.9%)、节杆菌属(Arthrobacter)0.1%~2.9%(0.8%)、浮霉菌属(Planctomyces)0.3%~1.3%(0.7%)、红游动菌属(Rhodoplanes)0.2%~2.0%(0.7%)。本次试验中硝化细菌主要包括有硝化作用的节杆菌属(Arthrobacter)和硝化螺菌属(Nitrospira),在本次试验中丰度相对较高,并且本次试验中大多湿地单元秋季的节杆菌属(Arthrobacter)丰度均高于冬季,不同样品中NOB的丰度大多数高于AOB的丰度,在秋季表现的更为明显。本次试验中的反硝化细菌主要包括假单胞菌属(Pseudomonas)、硫杆菌(Thiobacillus)、生丝菌属(Hyphomicrobium)、红杆菌属(Rhodobacter)、脱硫弧菌属(Desulfovibrio)等。湿地中秋季有反硝化功能的菌属所占比例均高于冬季。这与传统培养方法测得的反硝化细菌的趋势基本一致。
[Abstract]:Wetland is widely distributed all over the world and is called "the kidney of the earth". Wetland is the most abundant biological diversity and ecological function of nature. Wetland provides a lot of resources for human production, life and leisure and entertainment. It is the most important living environment of human beings and one of the most important environmental capital of human beings. Floodwaters play an important role in controlling and degrading pollutants. Wetlands are still a large number of wild animals and plants, especially the habitat of birds. Constructed wetlands are a kind of sewage treatment technology developed in recent years. It combines sewage treatment with environmental ecology, and can also be used in the effective treatment of sewage. The artificial wetland can create ecological landscape and bring environmental and economic benefits. Since the development of artificial wetland, it has been widely concerned with its unique advantages, and is widely used in the treatment of domestic sewage, industrial waste water and oil mining wastewater. The problem of eutrophication in water body has become a serious water environment problem in today's society. High efficiency denitrification from water environment has become a hot spot in the field of water environment (VymazalJ., 2002; DingYietal., 2012). So far, the methods of treating domestic sewage are varied, among which artificial wetland is low operating cost and purification efficiency. The artificial wetland is a way to remove the nitrogen in the wastewater by the way of substrate adsorption, precipitation and transformation, thus reducing the occurrence of eutrophication in the water body. The study of the effect of nitrogen removal in the artificial wetland can provide theoretical support for the removal efficiency of the artificial wetland. Through the investigation of the artificial wet area in pazan River in Tai'an, we have done further research on different plant wetlands. Through the experiment, we can draw the following conclusions: (1) the pollutant concentration in the autumn wetland is basically lower than the concentration of the winter pollutants. The removal rate of pollutants in autumn is higher than the removal rate of pollutants in winter. The highest removal rate of total nitrogen in the autumn is the highest. The plant is the wetland of Acorus calamus. The removal rate is 49% in autumn and 37% in winter. The removal effect of cattail wetland is the worst in winter, 16% in winter and 200% to 300% in winter. The removal efficiency of ammonia nitrogen (NH3-N) in autumn is re force flower and shallot wetland, the removal efficiency is 34.4% and 32.6% respectively, and the better wet plant wetness is removed to ammonia nitrogen (NH3-N) in winter. The removal rate of 22%. in autumn for nitrate nitrogen (NO3--N) removal is better than that of Huang Changpu. The removal efficiency of the wetland is 76.7%, 73.3%, and the removal efficiency of other wetlands is between 19% and 37%. The removal efficiency of nitrate nitrogen (NO3--N) in winter is 26.3%, and the removal efficiency is 26.3%. The efficiency of the removal of nitrate nitrogen (NO3--N) in the season is basically the same. All the systems in the experiment have NO2--N detection, but the content is low, the concentration is below 0.1mg/L and the range of change is small. (2) the relationship between the number of 3 microbes by traditional culture method is ammoniated bacteria denitrifying bacteria, ammoniated bacteria and nitrosation in the autumn wetland system The number of bacteria and denitrifying bacteria was basically higher than that in winter. The number of ammoniacal bacteria was significantly higher in autumn than in winter. The number of ammoniacal bacteria in the cattail wetland system was slightly higher than that in autumn in winter, and the number of ammoniacal bacteria in Huang Changpu and Zanli wetland system was basically the same in autumn and winter. The number of nitrosation bacteria in autumn was significantly higher than that in winter. In autumn, the number of nitrifying bacteria in the wetland system was the highest in the autumn. In winter, the number of nitrifying bacteria in the cattail wetland system was the highest. The number of denitrifying bacteria in the other wetland systems in autumn was higher than that in winter. In autumn, Huang Changpu wetland denitrifying bacteria in autumn. The number of denitrifying bacteria in spring onion wetland was the highest in winter. The number of nitrifying bacteria in each plant wetland and the removal rate of ammonia nitrogen (NH3-N) showed a good correlation (fall R=0.955, winter R=0.991). The number of denitrifying bacteria and the removal rate of nitrate nitrogen (NO3--N) showed a good correlation. (3) 7 wetland single in autumn and winter. The ACE, Chao1 index of the 14 yuan samples is different, but the difference is not big. The maximum value of ACE and Chao1 index in autumn samples all appear in the wetland of Zizania Zizania. The maximum value of ACE and Chao1 index in winter samples all appear in the wetland of Acorus calamus, which is the same as the trend of the OTU number. The main bacterial community structure of different plant wetland samples There are differences, but there are not much difference. Proteobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, Actinobacteria, Planctomycetes, Cyanobacteria, Gemmatimonadetes, and verruca microbe (Verrucomicrobia), respectively. The total amount of bacteria was 38.2%, 17.1%, 11.2%, 7.4%, 5.5%, 5.3%, 4.3%, 3.3%, 1.4%, which belonged to the deformable bacteria gate (Proteobacteria), Chloroflexi, Acidobacteria, and Pseudomonas (Bacteroidetes), which accounted for 73.9% of the whole sequence. These microbes were the dominant bacteria in this experiment. The group has Ramlibacter.3% to 1.9% (0.8%), nitrification helix (Nitrospira) 0.2% ~ 1.8% (0.9%), Bacillus Arthrobacter (Arthrobacter) 0.1% to 2.9% (0.8%), floating fungi (Planctomyces) 0.3% ~ 1.3% (0.7%), red swimming bacteria (Rhodoplanes) 0.2% ~ 2% (0.7%). Nitrifying bacteria mainly include nitrifying bacillus Arthrobacter (Arthrobacter) in this test. The abundance of Nitrospira was relatively high in this test, and the abundance of Arthrobacter in autumn was higher in most of the wetland units than in winter, and most of the abundance of NOB in different samples was higher than that of AOB in the autumn. The denitrifying bacteria in this test included mainly false denitrifying bacteria. Monomonas (Pseudomonas), Thiobacillus (Thiobacillus), raw silk bacteria (Hyphomicrobium), erythrobacterium (Rhodobacter), and desulphurizing Vibrio (Desulfovibrio). The proportion of denitrifying bacteria in the wetland in autumn is higher than that in winter, which is basically consistent with the trend of denitrifying bacteria obtained from traditional culture methods.
【学位授予单位】:山东农业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X703
【参考文献】
相关期刊论文 前10条
1 何军;韦庆敏;陈渊;;人工湿地污水处理技术及其发展应用研究[J];黑龙江科技信息;2017年02期
2 丁怡;王玮;王宇晖;宋新山;;水平潜流人工湿地的脱氮机理及其影响因素研究[J];工业水处理;2015年06期
3 曲朝辉;林陶;夏品华;张俊美;;黄土寨沟冬季底泥中氮素及微生物的分布[J];贵州农业科学;2014年11期
4 白晓龙;杨春和;顾卫兵;邹永平;唐晔;郑沁沁;;不同植物人工湿地净化模拟生活污水效果[J];江苏农业科学;2014年04期
5 张松达;魏文娟;俞宁;王先挺;郝虎林;;皎口生态湿地脱氮除磷的效果研究[J];浙江农业科学;2014年04期
6 吕涛;吴树彪;柳明慧;鞠鑫鑫;常永江;陈理;董仁杰;;潮汐流及水平潜流人工湿地污水处理效果比较研究[J];农业环境科学学报;2013年08期
7 楼红旗;楼凌云;;临安市湿地植物资源及其园林应用研究[J];浙江农业科学;2013年02期
8 刘明;黄磊;高旭;马晓霞;杜刚;;潜流湿地中微生物对三峡库区微污染水净化效果的影响[J];湖泊科学;2012年05期
9 奉小忧;宋永会;曾清如;彭剑峰;刘雪瑜;RHEE Jae Seong;IAMCHATURAPATR Janjit;;不同植物人工湿地净化效果及基质微生物状况差异分析[J];环境科学研究;2011年09期
10 赵庆节;;种植不同植物的人工湿地土壤微生物群落研究[J];上海交通大学学报(农业科学版);2011年03期
相关硕士学位论文 前6条
1 殷晓乐;季节性植物搭配强化人工湿地净化污水效果及其作用机制研究[D];山东大学;2016年
2 董文国;人工湿地运行参数优化及净化机理研究[D];山东师范大学;2014年
3 王玉琳;多壁碳纳米管对活性污泥系统污水处理效果及其细菌群落结构的影响[D];北京化工大学;2014年
4 彭恋;复合型人工湿地在不同季节对生活污水的处理及脱氮机理的研究[D];华中农业大学;2013年
5 宋丹;污染支流人工强化生态滤床实验研究[D];东北大学;2011年
6 奉小忧;人工湿地植物的筛选及其治污效果试验研究[D];湖南农业大学;2010年
,本文编号:1849146
本文链接:https://www.wllwen.com/wenyilunwen/huanjingshejilunwen/1849146.html