当前位置:主页 > 社科论文 > 新闻传播论文 >

基于社会网络分析的微博谣言传播模式及其演化研究

发布时间:2018-03-17 10:49

  本文选题:社会网络分析 切入点:微博 出处:《江苏大学》2017年硕士论文 论文类型:学位论文


【摘要】:近年来,微博在作为公众讨论公共事务,发表观点场所的同时,由于把关人的缺失,亦成为了滋生谣言的温床。虽然两院通过颁布《最高人民法院、最高检察院关于办理利用信息网络实施诽谤等刑事案件的司法解释》,对恶意散播谣言者实行惩治性措施,微博平台也相继建立辟谣帐号,但由于传播范围较广,参与人数较多,梳理所需人力成本较高,许多谣言最终不了了之,在国内微博造谣依然是一件低成本的事。因而对微博谣言传播模式共性特征及其演化规律进行研究,具有较强的现实意义和社会价值,可以为相关机构提供舆情应对依据,使微博谣言的治理与干预程序化、常态化。本文在对国内外舆情与网络舆情、网络谣言研究文献以及业界舆情监测手段调研基础之上,使用社会网络分析法与微博信息生命周期,以“年薪十二万加税”谣言为案例,从以下两个方面展开研究。其一是微博谣言传播模式。从基于整体网络的谣言传播结构和基于中心性的意见领袖识别这两个层次对同一主题下微博谣言传播模式以及单条微博谣言传播模式进行研究。根据结构特征对单条微博谣言传播模式进行总结,主要可以分为单点爆发式、多点连爆式以及多点触发式这三种传播模式,并分别给出相应的舆情应对策略。其二是微博谣言传播演化。分为微博谣言传播路径演化和微博谣言传播实时演化,前者侧重于可视化功能,将谣言传播路径进行全景式呈现,让舆情治理者对整个谣言发展经过有一个迅速、全面的了解;后者可以通过参数的变化对不同时段的网络进行观察,对于舆情监测及预警更有意义和价值。两种演化方式之间各有侧重,相互补充。本文的创新之处在于:(1)在对单条微博传播进行研究的同时,对同一主题下微博传播进行全景式呈现;(2)相较于之前文献采用对时间分段进行舆情演化研究的做法,本文建立了连续性的谣言传播演化网络,时间间隔更短,更加符合舆情治理的时效性要求;(3)将社会网络分析法置于微博谣言传播研究的语境之下,对各项社会网络分析指标进行优缺点的比较,阐释指标在谣言传播中的含义及其所能够表达的内容。
[Abstract]:In recent years, Weibo has become a breeding ground for rumors because of the lack of gatekeepers, while serving as a place for the public to discuss public affairs and express his views. Although both houses passed the promulgation of the Supreme people's Court, Judicial interpretation of the Supreme Procuratorate on the use of Information Network to carry out Criminal cases of Defamation and other Criminal cases. "to punish those who spread rumors maliciously." Weibo platform has also set up disinformation account number one after another, but because of its wide dissemination scope and large number of participants, The human cost of combing is high, and many rumors are finally dismissed. It is still a low cost thing for Weibo to spread rumors in China. Therefore, the common characteristics and evolution rules of Weibo rumor propagation mode are studied. Has strong realistic significance and social value, can provide the public opinion response basis for the related organization, causes Weibo rumour management and the intervention procedure, the normalization. This article is in the domestic and foreign public opinion and the network public opinion, the article is in the domestic and foreign public opinion and the network public opinion, On the basis of the literature on online rumor research and the survey of industry public opinion monitoring means, using the social network analysis method and Weibo's information life cycle, taking "annual salary 120,000 increase tax" rumor as a case, From the following two aspects, the first is the rumors spread mode of Weibo. From the overall network based on the rumors spread structure and the central opinion leaders to identify the two levels of the same theme, the rumor spread mode Weibo. According to the characteristics of the structure, the author summarizes the spread mode of the single Weibo rumor. It can be divided into three kinds of propagation modes: single point detonation, multi-point continuous detonation and multi-point trigger. The second is the evolution of the rumor propagation of Weibo. The second is the evolution of the path of the spread of the rumor, and the real-time evolution of the spread of the rumor. The former focuses on the visualization function and presents the path of the spread of rumors in a panoramic way. Let the public opinion governer have a quick and comprehensive understanding of the whole rumor development; the latter can observe the network at different times through the change of the parameters. Monitoring and early warning of public opinion is more meaningful and valuable. The two evolutionary methods have their own emphasis and complement each other. The innovation of this paper lies in the fact that the communication of single Weibo is studied at the same time. Comparing with the previous literature to study the evolution of public opinion in time section, this paper establishes a continuous network of rumor propagation and evolution, with shorter time interval. More in line with the timeliness requirements of public opinion governance, the social network analysis method is placed under the context of Weibo's rumour dissemination research, and the advantages and disadvantages of each social network analysis index are compared. Explain the meaning of indicators in the spread of rumors and what can be expressed.
【学位授予单位】:江苏大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:G206

【参考文献】

相关期刊论文 前10条

1 卢章平;王晗啸;李凤春;刘桂锋;张艳婷;;社会网络分析在社交媒体上的应用研究[J];情报科学;2016年12期

2 雷霞;;谣言:概念演变与发展[J];新闻与传播研究;2016年09期

3 常建秋;沈炜;;基于字符串匹配的中文分词算法的研究[J];工业控制计算机;2016年02期

4 许鑫;翟姗姗;姚占雷;;学术博客的学科交互实证分析——以科学网博客为例[J];现代图书情报技术;2015年Z1期

5 雷宏振;章俊;兰娟丽;袁丹;;基于谣言传播模型的“微博社区”负面信息扩散效应及案例研究[J];现代情报;2015年05期

6 陈先红;张凌;;草根组织的虚拟动员结构:“中国艾滋病病毒携带者联盟”新浪微博个案研究[J];国际新闻界;2015年04期

7 陈远;刘欣宇;;基于社会网络分析的意见领袖识别研究[J];情报科学;2015年04期

8 王晰巍;邢云菲;赵丹;李嘉兴;;基于社会网络分析的移动环境下网络舆情信息传播研究——以新浪微博“雾霾”话题为例[J];图书情报工作;2015年07期

9 刘臣;周立欣;霍良安;张刚;;非热门微博信息的传播特征分析[J];情报杂志;2014年11期

10 洪小娟;姜楠;夏进进;;基于社会网络分析的网络谣言研究——以食品安全微博谣言为例[J];情报杂志;2014年08期

相关硕士学位论文 前4条

1 丁洁;基于社会网络的网络舆情演化研究[D];南京理工大学;2015年

2 范升建;网络环境下公共突发事件中的谣言传播研究[D];江西财经大学;2012年

3 龚海军;网络热点话题自动发现技术研究[D];华中师范大学;2008年

4 刘武;基于统计机器学习算法的汉语分词系统的研究[D];北京邮电大学;2006年



本文编号:1624405

资料下载
论文发表

本文链接:https://www.wllwen.com/xinwenchuanbolunwen/1624405.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户15e32***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com