突发事件下基于SIRS模型的网络情感传播研究
[Abstract]:In recent years, with the rapid development of the Internet, the number of Internet users has become more and more, resulting in a large number of public opinion information flooded in the cyberspace, these public opinion information profoundly affect the psychology and behavior of Internet users. In particular, the frequent occurrence of network emergencies results in people being influenced by the public opinion on the Internet, either positive or negative, which are easily polarized under the influence of network groups. Therefore, if the behavior of individual Internet users is influenced by negative polarization, it will result in serious social consequences. Therefore, it is of great significance for enterprises and governments to grasp the emotional trend of Internet users and adopt corresponding guiding strategies. Based on the SIRS model, this paper analyzes the key influencing factors of emotional communication, taking Wei Zexi's network event in 2016 as an example, collecting relevant data, using Gephi software to generate the propagation network model first, and then using Netlogo software. Python language is used to simulate the model. By combining emotional and central mining indexes, key nodes can be found, and then the selected target immune strategy can be used to immune the model. The specific research contents include the following three aspects: 1. Through expounding the mechanism of information dissemination, analyzing the relationship between information and emotion, eliciting the generation mechanism of emotion and the communication mechanism of emotion, combining the two. This paper adopts the method of graph theory modeling, based on social network, collects some Weibo's data, establishes the transmission network of emotion. 2. Based on the SIRS model, and according to the characteristics of social network, two parameters, birth rate and recovery loss rate, are added. And the stability type of the model is proved by using Lyapunov stability law. By changing the values of each parameter, observing the effect on the proportion of infected people, and finally determining that the immune rate and recovery loss rate are the key factors affecting the number of infected people. 3. According to the conclusion of Chapter 4, We know that immune rate and recovery loss rate are the key factors to affect the effect of emotional transmission. In Chapter 5, we use the corresponding immune strategy to immune nodes in the network, and compare the three immune strategies and one improved immune strategy. The target immunization strategy is the best. Finally, the key nodes are excavated by combining the emotional index with the central index, and the immune effects are compared.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:G206
【参考文献】
相关期刊论文 前10条
1 戴杏云;张柳;戴伟辉;朱华;;社交网络的情感图谱研究[J];管理评论;2016年08期
2 李勇;蔡梦思;邹凯;李黎;;社交网络用户线上线下情感传播差异及影响因素分析——以“成都女司机被打”事件为例[J];情报杂志;2016年06期
3 李春雷;雷少杰;;突发群体性事件后情绪传播机制研究[J];现代传播(中国传媒大学学报);2016年06期
4 汤小东;钱进;;社交网络中基于情感模型的用户转发行为预测[J];现代计算机(专业版);2016年05期
5 赖胜强;唐雪梅;;信息情绪性对网络谣言传播的影响研究[J];情报杂志;2016年01期
6 赵卫东;赵旭东;戴伟辉;戴永辉;胡虹智;;突发事件的网络情绪传播机制及仿真研究[J];系统工程理论与实践;2015年10期
7 纪雪梅;王芳;;SNA视角下的在线社交网络情感传播研究综述[J];情报理论与实践;2015年07期
8 何天翔;张晖;李波;杨春明;赵旭剑;;一种基于情感分析的网络舆情演化分析方法[J];软件导刊;2015年05期
9 王晰巍;邢云菲;赵丹;李嘉兴;;基于社会网络分析的移动环境下网络舆情信息传播研究——以新浪微博“雾霾”话题为例[J];图书情报工作;2015年07期
10 沈乾;黄远;马宁;刘怡君;;复杂网络演化中的“熵减点”研究:以微博传播网络的演化为例[J];数学的实践与认识;2015年03期
相关博士学位论文 前2条
1 杜占玮;个体的情感和传染病传播理论研究[D];吉林大学;2015年
2 胡庆成;基于复杂网络的信息传播模型研究[D];清华大学;2015年
相关硕士学位论文 前9条
1 刘莹莹;基于传染病模型的情绪传播机制与影响因素的研究[D];江苏大学;2016年
2 刘倩倩;微博在线社交网络的病毒传播研究[D];兰州交通大学;2015年
3 黄格;复杂社会网络中舆情传播模型及影响因素分析[D];湘潭大学;2015年
4 王淑娴;基于隔离策略的复杂网络病毒传播模型研究[D];山东师范大学;2015年
5 张沙沙;非常规突发事件情景下民众恐慌情绪的影响因素研究[D];燕山大学;2015年
6 郑爱国;基于复杂传染机制的在线社会网络信息传播模型研究[D];大连理工大学;2015年
7 王小伟;基于动态复杂网络的病毒传播模拟及控制策略研究[D];华南理工大学;2015年
8 吴腾飞;基于复杂网络理论的微博传播动力学研究[D];杭州电子科技大学;2015年
9 张荣华;论网络突发事件的成因与应对策略[D];北京邮电大学;2011年
,本文编号:2402950
本文链接:https://www.wllwen.com/xinwenchuanbolunwen/2402950.html