菲立磁对兔骨髓基质细胞生物学活性影响的实验研究
发布时间:2018-05-26 13:42
本文选题:骨髓基质细胞 + 神经干细胞 ; 参考:《第一军医大学》2007年硕士论文
【摘要】: 目前,对中枢神经系统(central nervous system,CNS)病的治疗目的多为缓解症状和控制疾病的发展。近年来研究发现,在成年哺乳动物脑组织中存在神经干细(neural stem cells,NSCs),这些NSCs可以分化成神经组织,表明CNS也存在再生修复能力,为研究CNS损伤的修复提出了希望。干细胞(stem cells,SCs)是指有多种分化潜能和自我更新能力的细胞,这种多潜能细胞存在于成年个体的许多组织和胚胎中。近年来,随着SCs研究的深入,骨髓基质细胞(bone marrow derived stroma cells,BMSCs)被证明具有向NSCs分化的潜能,同时BMSCs还具有取材方便、来源广泛、免疫原性低、遗传性状稳定等优势,因此目前已成为SCs移植替代治疗最理想的种子细胞来源之一,应用NSCs特别是BMSCs源性NSCs分化调控和移植修复CNS功能亦成为研究重点。 到目前为止,不论是CNS还是周围神经系统(peripheral nervous system,PNS)疾病,绝大多数经NSCs移植治疗后,判断其临床症状的改善是否由移植细胞所致,以及移植后神经再生的鉴定主要采用免疫组织化学的方法检测。该方法必须获取组织而不可能进行活体评价,临床及科研工作中渴望能无创性的对NSCs移植后的存活、迁徙及功能性分化进行活体研究。 随着超顺磁性磁共振成像(magnetic resonance imaging,MRI)对比剂的研制成功及MRI设备及方法的快速发展,为无创伤性地在活体内动态监测移植后骨髓基质细胞的存活、迁移、生存状态等情况提供了可能。目前,MRI可以提供25~50μm的分辨率,接近单一细胞的水平,使其在理论上可以用来对移植的细胞进行活体示踪。氧化铁类中的超顺磁性氧化铁(superparamagnetic iron oxide,SPIO)和超小顺磁性氧化铁(ultrasmall superparamagnetic iron oxide,USPIO)是较为理想的MRI示踪剂,已经成功在体外用于多种细胞的标记。菲立磁(feridex,FE)是经过美国食品及药物管理局(food and drug administration,FDA)认可的临床上应用的SPIO类MRI造影剂之一,借助转染试剂多聚赖氨酸(poly-l-lysine,PLL),FE已成功标记多种哺乳动物SCs。目前国内专家学者已经开始了关于FE的试验研究,系统研究了大鼠、家兔及恒河猴的FE标记BMSCs的培养及其向NSCs的转化,向外伤动物模型的移植,利用MRI影像学定位检查标记NSCs在脑内的成活和迁移情况,并运用免疫织组化学、透射电子显微镜等技术观察NSCs生长、分化和突触的形成及与脑组织整合情况,得到了肯定的实验结果。但目前针对FE标记前后BMSCs生物学活性的检测,所做的研究还不够完善,尚未见相关研究的系列报道。本课题拟在细胞水平,用不同浓度的FE特异性标记BMSCs,并于体外对标记前后的BMSCs活性、增殖、分化能力、凋亡等情况进行研究,探索不同浓度FE对标记BMSCs的影响及标记BMSCs的最佳浓度,为今后的进一步研究工作提供技术参考。 第一章新西兰兔BMSCs体外分离培养和诱导分化的实验研究 目的:观察BMSCs体外培养、扩增和诱导分化为NSCs的情况,熟悉并掌握细胞培养技术,为下一步实验奠定基础。 方法: 1.以新西兰大白兔为实验对象,无菌条件下行髂骨穿刺取骨髓,梯度密度离心法分离获取新西兰兔BMSCs。 2.骨髓源性NSCs诱导培养及纯化:原代培养第3天后,应用NSCs培养基,加入胎牛血清(FBS 1%终浓度)、白血病抑制因子(LIF 10ng/ml)、碱性成纤维细胞生长因子(bFGF 10ng/ml)进行体外培养、诱导、增殖。培养1~2周后得到较纯化的BMSCs,可进行细胞传代培养,在培养过程中加入FBS以及维甲酸(RA 0.5μg/ml)以诱导BMSCs向NSCs分化。 3.CK-2型倒置相差光学显微镜追踪观察细胞生长情况并拍照。 4.免疫细胞化学鉴定:采用SABC法,利用抗神经巢蛋白(Nestin)、神经元特异性烯醇化酶(NSE)、胶质原纤维酸性蛋白(GFAP)等免疫细胞化学方法对BMSCs分化成的NSCs、神经元和神经胶质细胞分别进行特异性鉴定。 结果: 1.倒置相差显微镜观察:接种后的10小时内,BMSCs开始贴壁,贴壁细胞培养48小时后有分裂增殖,然后逐渐形成岛屿状细胞克隆团,给予适当的分化条件,10~20天后,这些细胞能分化成具有细长突起、多种形态的细胞。 2.经免疫细胞化学鉴定,早期的培养细胞在没有给予诱导分化时可阳性表达Nestin,表明具有SCs特性,证实已经形成BMSCs源性NSCs(BMSCs-D-NSCs);培养细胞经诱导分化后能分化出神经元样细胞和胶质细胞样细胞,免疫细胞化学检测可见有NSE、GFAP的表达。 结论: 1.新西兰大白兔的BMSCs能在体外培养和扩增,具有增殖能力,能表达Nestin抗原,具有NSCs特征。 2.本实验所采用的培养方案(NSCs培养基)适合于兔BMSCs向NSCs转分化,源自BMSCs的NSCs具有分化潜能,在合适的诱导分化条件下分化出的细胞能表达神经系细胞(神经元和神经胶质细胞)的特征性抗原。 3.BMSCs来源丰富,体外分离、扩增容易,可作为自体移植的种子细胞。 第二章FE标记新西兰兔BMSCs的细胞生物学研究 目的:初步探索利用不同浓度FE和转染试剂特异性标记新西兰兔BMSCs,于体外对标记前后的BMSCs活性、增殖、分化能力、凋亡等情况进行研究,探索FE标记细胞的最佳浓度,为今后的进一步研究工作提供技术参考。 方法: 1.实验动物和骨髓采集、BMSCs的分离扩增同第一部分。 2.FE标记细胞的浓度及分组:首先将FE分别稀释成10μg/ml、25μg/ml、50μg/ml和75μg/ml四个不同浓度,并分别和PLL(1.5μg/ml)等体积混合,室温下振荡摇匀,,30分钟后将FE-PLL复合物(FE-PLL)加入细胞培养基中,FE(Fe)和PLL的终浓度分别为5μg/ml、12.5μg/ml、25μg/ml、37.5μg/ml和0.75μg/ml。试验最后分组:a.纯BMSC-D-NSC组;b.0.75PLL组:c.5FE-0.75PLL组;d.12.5FE-0.75PLL组;e.25FE-0.75PLL组;f.37.5FE-0.75PLL组(n=10)。 3.倒置显微镜和透射电镜观察:观察各组标记细胞的形态学变化。 4.细胞内铁的鉴定:采用普鲁士兰染色和透射电镜对细胞内铁和标记效率进行检测。 5.FE-PLL标记BMSCs的渗漏性检测:FE标记标记NSCs与神经元共培养以检测标记细胞是否会发生FE的渗漏。 6.生长曲线的测定:采用CCK-8法鉴定各组细胞的活力。 7.流式细胞仪(flow cytometry,FCM)检测凋亡:对细胞凋亡情况进行分析。 8.BMSCs标记后细胞MRI:MRI扫描对象分为5组,4.7T MRI扫描序列包括轴面T_2快速自旋回波(Fast spin echo,FSE)序列,T_2~*梯度回波(Gradient echo,GRE)序列扫描。 9.统计分析:应用SPSS13.0统计软件,细胞吸光度及凋亡率数据均采用重复测量的方差分析进行处理,组间两两比较采用SNK法,检验水准α=0.05。 结果: 1.倒置显微镜和透射电镜观察:倒置相差显微镜下在不同培养阶段的标记组和未标记组BMSCs相比较,各组之间细胞形态无明显差异。组间主要差别表现为FE-PLL标记的BMSCs颜色呈淡黄色~深黄色。透射电镜下大部分标记的BMSCs其大小形态细胞器无明显变化,胞质内散在分布含膜的囊泡样包涵体结构,少部分标记细胞可见凋亡表现,f组凋亡细胞较多。 2.细胞内铁的鉴定:电镜结果显示FE-PLL复合物标记的BMSCs胞质内含有许多包裹铁颗粒的囊泡。普鲁士蓝染色显示FE-PLL复合物标记BMSCs胞质内出现细小的蓝色铁颗粒,c~f组蓝色依次加深。 3.FE标记效率的组间比较:各FE组细胞均被不同程度标记,光镜下计数后统计表明随着FE浓度的增加其标记效率亦增加。电镜下观察结果表明随各组浓度增高,胞质内涵FE的含膜囊泡结构也随之增高,说明其含铁量亦随之增加。 4.酶联免疫检测仪检测OD值及生长曲线测定结果:各组细胞相比,OD值有显著性差异,a、b、c、d、e组无显著性差异,f组同其他a~e组比较差异有统计学意义(P<0.001),说明FE-PLL复合物在25μg/ml以下时,对细胞活力无显著影响。 5.FE-PLL标记NSCs的渗漏性检测:FE-PLL复合物标记NSCs与大脑皮层神经元共同培养后,普鲁士兰染色显示标记NSCs呈阳性,未标记的大脑皮层神经元内呈阴性。 6.FCM检测细胞凋亡:各组细胞随着培养时间的延长细胞凋亡有增加的趋势,各组细胞凋亡率比较存在显著性差异,a、b、c、d、e组无显著性差异,f组同其他各组比较存在显著性差异(P<0.001),说明FE-PLL复合物在25μg/ml以下时,对细胞活力无显著影响。 7.标记BMSCs的细胞MRI:在T_2及T_2~*序列,随FE浓度的增加,标记细胞信号降低的越明显,未标记的细胞呈显著高信号。 结论: 1.不同浓度FE-PLL复合物可以用来体外标记新西兰兔BMSCs。 2.随FE浓度的增高,其标记效率亦增高,且标记后T_2 WI或T_2~* WI信号改变愈明显。浓度在25μg/ml以下时,应用FE-PLL复合物标记新西兰兔BMSCs安全、有效。 3.25μg/ml是FE标记细胞适宜的浓度。
[Abstract]:At present, the purpose of the treatment of central nervous system (CNS) disease is to alleviate the symptoms and control the development of the disease. In recent years, it has been found that there are neural stem thin (neural stem cells, NSCs) in adult mammalian brain tissue. These NSCs can be differentiated into nerve tissue, which indicates that CNS also has the ability to regenerate and repair, which is the research of CNS. The repair of CNS damage is hopeful. Stem cells (SCs) is a cell with a variety of differentiation potential and self renewal capacity. This multipotential cell exists in many tissues and embryos of adult individuals. In recent years, with the in-depth study of SCs, the bone marrow stromal cells (bone marrow derived stroma cells, BMSCs) have been proved to be directed to N. SCs has the potential of differentiation, and BMSCs also has the advantages of convenience, wide source, low immunogenicity, stable genetic character and so on. So it has become one of the most ideal seed cell sources for the replacement therapy of SCs transplantation. The application of NSCs, especially the BMSCs derived NSCs differentiation and regulation and the transplantation of CNS function, has also become the focus of research.
So far, whether it is CNS or peripheral nervous system (PNS) disease, most of them have been treated with NSCs transplantation to determine whether the improvement of the clinical symptoms is caused by the transplanted cells, and the identification of the regeneration of the nerve after transplantation is mainly detected by the immunohistochemical method. It is possible to carry out in vivo evaluation. In clinical and scientific research, it is eager to carry out in vivo studies on the survival, migration and functional differentiation of NSCs after noninvasive transplantation.
With the development of superparamagnetic magnetic resonance imaging (magnetic resonance imaging, MRI) contrast agent and the rapid development of MRI equipment and methods, it is possible to dynamically monitor the survival, migration and survival of bone marrow stromal cells after transplantation in vivo. At present, MRI can provide a resolution of 25~50 mu m. The level of a single cell can be used in theory to trace the transplanted cells in vivo. The superparamagnetic iron oxide (superparamagnetic iron oxide, SPIO) and ultra small paramagnetic iron oxide (ultrasmall superparamagnetic iron oxide, USPIO) are ideal MRI tracers in the iron oxide class, which have been successfully used in vitro. Feridex (FE) is one of the SPIO class MRI contrast agents approved by the food and Drug Administration (FDA) by the United States Food and Drug Administration (FDA), which has been successfully labeled with polylysine (poly-L-lysine, PLL) with the aid of the transfection reagent. The experimental study of FE was carried out. The FE marker BMSCs of rats, rabbits and Ganges RIver monkeys was cultured and transformed into NSCs. The transplantation of the traumatic animal model to the traumatic animal model was studied. The survival and migration of NSCs in the brain was marked with MRI imaging location, and the growth of NSCs was observed by using the techniques of immunofluorescence and transmission electron microscopy. The formation of synapses and synapses and the integration of brain tissue have obtained positive results. But at present, the research on the detection of biological activity of BMSCs before and after FE markers is not perfect, and there is no series of reports on the related research. This subject is intended to mark BMSCs with different concentration of FE specificity at the cell level and to mark in vitro. The activity, proliferation, differentiation, and apoptosis of BMSCs before and after are studied, and the effects of different concentrations of FE on labeled BMSCs and the optimum concentration of labeled BMSCs are explored, which will provide a technical reference for further research.
Chapter one: isolation, culture and induction of differentiation of New Zealand rabbit BMSCs in vitro
Objective: To observe the in vitro culture, expansion and differentiation of BMSCs into NSCs, and to familiarise and master cell culture techniques, and lay the foundation for further experiments.
Method锛
本文编号:1937437
本文链接:https://www.wllwen.com/yixuelunwen/binglixuelunwen/1937437.html
最近更新
教材专著