多种细胞体系G_q蛋白偶联受体和IP3受体偶联的研究
[Abstract]:G-protein-coupled receptors (GPCRs) are the most widely recognized class of receptors. These receptors are structurally similar, formed by a peptide chain, transmembrane seven times, N-terminus extracellular, C-terminus intracellular. These receptors and effectors are mediated by G proteins. There are many G proteins, but all types of G proteins are composed of three distinct subunits. According to the structure of the alpha subunit of G protein, it can be divided into six subfamilies: Gs, Gi/o, G q, Gt, Gg and G12 [1]. Phospholipase C (PLC) signaling system mediated by G Q protein-coupled receptors is a widespread signal transduction mechanism. First, PLC beta is activated, then the membrane PIP2 is hydrolyzed to produce two second messengers IP3 and DAG, which regulate many cellular functions, such as ion channel function, cell cycle, gland secretion, and so on.
IP3 receptor is a kind of channel protein which can induce intracellular calcium release. It can bind to IP3 and induce intracellular calcium release, which leads to the elevation of intracellular calcium level. Up to now, four IP3 receptors have been found, of which type I receptors are ubiquitous in nerve tissues. Intracellular calcium release plays an important role in cell signal transduction. In addition, abnormal calcium signaling is also involved in many pathological processes.
M current was first discovered by Brown and Admas in the superior cervical sympathetic ganglion of bullfrog in 1980. It is a slow-activated, non-inactivated voltage-dependent outward potassium current, named for its strong inhibition by muscarinic receptors. Since 1998, it has been gradually recognized that its molecular basis is the potassium channel of the KCNQ family (KCNQ2/3). Current is closely related to the excitability of the nervous system. Since the discovery of current, a great deal of research has been done on its regulation mechanism. It has been found that many Gq protein-coupled receptors can induce M-current inhibition after activation, and membrane phosphatidylinositol 4,5 diphosphate (PIP2) is involved in the letter of membrane receptors. It has been proved that the activation of Gq protein-coupled receptor can induce the hydrolysis of PIP2 and the production of IP3 and DAG on the inner surface of the cell membrane. Previous studies have shown that the inhibition of M current caused by the activation of M1 receptor is due to the hydrolysis of PIP2, while the activation of another receptor, BK2 receptor, can also produce IP3 and DAG, but the activation of the receptor causes the M current. Current inhibition is mediated by calcium ions and is achieved by calmodulin. Why do M1 receptors and BK2 receptors, which also use the PLC signaling pathway, use PIP2 and calcium ions to regulate M current respectively? Therefore, some people have proposed to explain the specificity of this signal transduction by using the micro-domain structure. They believe that BK2 receptors are affected. The body is in the same microdomain as IP3 receptor, so the IP3 produced by the activation of BK2 receptor can act on the nearby IP3 receptor at a higher concentration, and then induce intracellular calcium release; while the M receptor and IP3 receptor do not form the corresponding microdomain structure, so the IP3 produced by the activation of BK2 receptor can not form the IP3 receptor activated locally. These results are based on the study of the rat superior cervical sympathetic ganglion. It is well known that the phospholipase C signaling pathway is a signal transduction mechanism that exists widely in many forms of life. Therefore, the differences in this signal transduction are among other gods. It is not known whether the cells exist or not. The clarification of this question will be of great significance to the further understanding of the diversity of phospholipase C signaling pathways.
Previous studies by our team have shown that in different nerve cells, M1, BK2, H1, AT1 receptors can hydrolyze PIP2 and produce IP3 and DAG after activation, but there are significant differences in the role of intracellular calcium release. In the superior cervical ganglion cells, BK2, H1, AT1 receptors can activate the increase of intracellular calcium, while M1 receptors can not. In hippocampal neurons, the activation of BK2, H1 and M1 receptors results in elevation of intracellular calcium, whereas AT1 receptors do not. In HEK293 cells, the release of intracellular calcium caused by overexpression of M1 and BK2 receptors is different from that of neurons, both of which can cause elevation of intracellular calcium. Overexpression of M1 and BK2 receptors in Xenopus oocytes can also cause elevation of intracellular calcium. The relationship between different Gq protein-coupled receptors and IP3 receptors located on the endoplasmic reticulum was observed by immunoprecipitation technique in rat superior cervical sympathetic ganglion cells, hippocampal neurons, HEK293 cells and Xenopus oocytes, and whether there was a signal microdomain and its characteristics were explored in order to provide Gq protein-coupled receptors. The diversity of signal pathways is to find biochemical evidence.
AIM: To investigate the relationship between different Gq protein-coupled receptors and endoplasmic reticulum IP3 receptors in two different types of nerve cells, HEK293 cells and Xenopus oocytes by immunoprecipitation technique.
Methods: The relationship between these four Gq protein-coupled receptors and endoplasmic reticulum IP3 receptors in superior cervical sympathetic ganglion and hippocampal neurons was observed by immunoprecipitation, SDS-PAGE and Western blot. In Xenopus oocytes, M1 and BK2 receptors were exogenously expressed in Xenopus oocytes using in vitro transcripted RNA. The relationship between these two receptors and IP3 receptors was observed.
Results: (1) The expression of M1, H1, AT1 and BK2 receptors was detected in both superior cervical ganglion and hippocampal neurons. (2) The expression of IP3 receptors was detected in both superior cervical ganglion and hippocampal neurons. (3) The results of immunoprecipitation showed that H1, AT1, BK2 receptors could co-precipitate with IP3 receptors in superior cervical sympathetic ganglion, but no M1 and IP3 receptors were found. Receptor coprecipitation. In hippocampal neurons, AT1 receptor can coprecipitate with IP3 receptor, but no coprecipitation of M1, H1, BK2 receptor and IP3 receptor was found. (4) In HEK293 cells expressing exogenous M1, H1, AT1 and BK2 receptors respectively, the expression of four receptors can be detected. (5) In HEK293 cells expressing these four receptors, the expression of these receptors can be detected. To the expression of IP3 receptors. (6) M1, BK2, AT1 and IP3 receptors co-precipitated in cells overexpressing these four receptors, while H1 receptors could not co-precipitate with IP3 receptors. (7) Overexpression of these two receptors was detected in Xenopus oocytes overexpressing M1 and BK2 receptors. (8) Both M1 and BK2 receptors could be detected in Xenopus oocytes overexpressing Xenopus oocytes. The expression of IP3 receptor was detected. (9) In Xenopus oocytes, both receptors could coprecipitate with IP3 receptor.
CONCLUSIONS: (1) The relationship between M1 receptor, H1, AT1, BK2 receptor and IP3 receptor is different in rat superior cervical sympathetic ganglion cells. H1, AT1, BK2 receptor and IP3 receptor are coupled, but there is no coupling between M1 and IP3 receptor. In hippocampal neurons, there is no coupling between AT1 and IP3 receptor, M1, BK2, H1 receptor and IP3 receptor. (2) In HEK293 cells, M1, H1, AT1, BK2 receptors were associated with IP3 receptors, which were significantly different from nerve tissues. (3) In Xenopus oocytes, there was a coupling relationship between M1 and BK2 receptors and IP3 receptors, which was consistent with the results of HEK293 cells. (4) GPCR and IP3 receptors were coupled differently in different tissues and cells. Its cellular physiological significance needs to be further elucidated.
【学位授予单位】:河北医科大学
【学位级别】:硕士
【学位授予年份】:2007
【分类号】:R33
【相似文献】
相关期刊论文 前10条
1 杨亮;杨细飞;张毅;刘建军;李杰;;利用免疫共沉淀技术验证SET与eEF1A1在人肝细胞内的相互作用[J];安徽农业科学;2010年35期
2 刘一平,邓继先,张英丽,吕娅歆,程萱,黄翠芬;用免疫共沉淀进一步确定SMAD4中间连接区在形成同源和异源复合物时的作用[J];中国生物化学与分子生物学报;2000年04期
3 孙玉静,杨守京,刘彦仿;汉坦病毒感染乳鼠脑组织中HSP70与病毒抗原关系[J];临床与实验病理学杂志;2002年05期
4 高娟,杨守京,刘彦仿;汉滩病毒结构蛋白与该病毒感染诱导表达的多种热休克蛋白的研究[J];中华传染病杂志;2004年05期
5 高婧;董长垣;胡俊;李艳;Joseph K K Li;戴莹;郭淑芳;;HBV X蛋白与宿主APOBEC3G蛋白之间的相互作用[J];武汉大学学报(理学版);2007年04期
6 王春美;盛光耀;卢洁;邹湘;方营旗;白松婷;谢垒;;免疫共沉淀检测人p65和SMRT蛋白间相互作用[J];山东大学学报(医学版);2010年10期
7 胡小晓,熊熙文,周建林,张健;小鼠肿瘤致死因子α诱导的TNFAIP1蛋白与DNA聚合酶δ亚单位的相互作用[J];湖南师范大学自然科学学报;2004年03期
8 王震;刘冬青;王茵;屈伸;孟宪敏;;Nelin与F-actin及Filamin相互作用的鉴定[J];华中科技大学学报(医学版);2007年03期
9 张方;施毅;辛晓峰;刘玉秀;钱桂生;罗向东;宋勇;李子玲;;大鼠肺泡巨噬细胞Bcl-2相关抗凋亡蛋白-1表达变化及其调节糖皮质激素受体功能的研究[J];医学研究生学报;2007年11期
10 王鸿杰;张志文;;用酵母双杂交系统筛选ATF5相互作用蛋白[J];中国生物化学与分子生物学报;2008年02期
相关会议论文 前10条
1 邱峰;毛小琴;陈世知;邱宗荫;;GBLP相互作用蛋白研究[A];2008年中国药学会学术年会暨第八届中国药师周论文集[C];2008年
2 邵伟;刘成国;;幽门螺杆菌CagA蛋白干扰细胞信息通路能力独立于不同胃疾状态[A];2008年浙江省内科学学术会议论文汇编[C];2008年
3 龙鼎新;伍一军;;神经病靶酯酶的泛素化降解及ARA54的调节[A];湖南省生理科学会2008年度学术年会论文摘要汇编[C];2008年
4 池志强;;G蛋白偶联受体二聚体研究进展[A];第八届全国生化药理学术讨论会暨第七届Servier奖颁奖大会会议摘要集[C];2003年
5 彭旭;谭江琳;袁顺宗;马兵;贺伟峰;黄正根;程文广;贾雄飞;王晓娟;胡婕;甘成军;陈希炜;胡晓红;张小容;罗高兴;吴军;;免疫共沉淀技术验证HT036与P311间的相互作用[A];中华医学会烧伤外科学分会2009年学术年会论文汇编[C];2009年
6 张照环;徐晓辉;张勇;周建峰;俞仲望;何成;;LINGO-1与WNK1结合并调节Nogo诱导的轴突延长抑制[A];中华医学会第十三次全国神经病学学术会议论文汇编[C];2010年
7 梁淑芳;于延豹;许雪娇;宋培明;薛燕;杨們原;陈先;;基于氨基酸同位素代谢标记的免疫共沉淀分析蛋白质相互作用[A];中国蛋白质组学第三届学术大会论文摘要[C];2005年
8 李占潮;周漩;戴宗;邹小勇;;基于支持向量机预测G蛋白偶联功能类[A];第十届全国计算(机)化学学术会议论文摘要集[C];2009年
9 王震;孟宪敏;郭莲军;;人类新基因Nelin及其生物学特性的研究[A];湖北省暨武汉生物化学与分子生物学学会第八届会员代表大会和第十五次学术年会论文摘要汇编[C];2004年
10 孟凤艳;何夏萍;王亚军;蒋小松;李娟;;家鸡似降钙素受体基因的克隆、序列分析以及组织表达图谱探究[A];中国动物遗传育种研究进展——第十五次全国动物遗传育种学术讨论会论文集[C];2009年
相关重要报纸文章 前9条
1 ;重视微循环研究 为临床应用服务[N];中国医药报;2003年
2 陈卫东;我发现交感神经系统调控免疫“钥匙”[N];科技日报;2004年
3 汪敏华;细胞信号转导之谜解开[N];解放日报;2004年
4 陆志城;黑色素浓缩激素与多种现代病有关[N];医药经济报;2002年
5 张中桥;猴病毒40——脑肿瘤发生的“罪魁”[N];中国医药报;2001年
6 张中桥;猴病毒40与脑肿瘤发生有相关性[N];医药经济报;2001年
7 记者 陆叶清;发现抑制胃癌细胞的重要基因[N];上海科技报;2010年
8 记者 孙国根;人类分娩启动机制研究获进展[N];健康报;2011年
9 张艳敏 唐发发 孙雨;扎根国土 引领国际甲胎蛋白研究[N];科技日报;2011年
相关博士学位论文 前10条
1 龚先琼;乙型肝炎病毒表面抗原与烯酰辅酶A水合酶相互作用及对细胞凋亡的影响[D];福建医科大学;2012年
2 兰世杰;BCCIP相互作用蛋白的鉴定与功能研究[D];吉林大学;2012年
3 周伟强;DOC-1R基因对细胞增殖周期影响的研究[D];中国医科大学;2003年
4 许放;G蛋白偶联受体介导雄激素对前列腺癌细胞快速作用的非基因组机制[D];第二军医大学;2006年
5 倪燕翔;G蛋白偶联受体调节β淀粉样蛋白的产生[D];中国科学院研究生院(上海生命科学研究院);2005年
6 孙涛;肿瘤细胞成血管塑形在血管生成拟态形成中的作用研究[D];天津医科大学;2010年
7 束峰珏;人类丝氨酸/苏氨酸激酶Aik与细胞周期调控的关系探讨[D];复旦大学;2002年
8 高霄飞;表皮生长因子对背根神经节神经元内向整流型钾离子通道调节的研究[D];第二军医大学;2005年
9 李中秋;Neuroglobin在视网膜中的表达及其保护视网膜缺血缺氧损伤分子机制的研究[D];吉林大学;2006年
10 黄增荣;幽门螺杆菌空泡毒素与线粒体腺嘌呤核苷酸转移酶相互作用的研究[D];西北农林科技大学;2010年
相关硕士学位论文 前10条
1 梁惠玲;多种细胞体系G_q蛋白偶联受体和IP3受体偶联的研究[D];河北医科大学;2007年
2 陈卿;免疫共沉淀蛋白芯片分析方法及其应用的研究[D];中国人民解放军军事医学科学院;2010年
3 孙婷婷;免疫共沉淀联合质谱筛选肝核因子HNF3β相互作用蛋白质及初步功能研究[D];安徽医科大学;2011年
4 张静;自然临产前后与NF-κB相互作用蛋白质的研究[D];中南大学;2012年
5 杨阳;智力低下相关蛋白FXR1P与FTH1及CMAS相互作用的研究[D];南华大学;2010年
6 刘巧姝;在自然临产和药物临产中与NF-κB相互作用的蛋白质的研究[D];中南大学;2012年
7 李成华;KChIP1在KV4.3膜运输中的作用[D];中南大学;2003年
8 张文婷;LOH12CR1互作蛋白DAPK3的鉴定[D];中南大学;2012年
9 黎亮;RANBP9在早幼粒细胞白血病发生中的作用研究[D];重庆医科大学;2012年
10 伍志强;LRP16调控NF-κB信号通路的研究[D];中国人民解放军军医进修学院;2011年
,本文编号:2251206
本文链接:https://www.wllwen.com/yixuelunwen/binglixuelunwen/2251206.html