当前位置:主页 > 医学论文 > 妇产科论文 >

不同空腹血糖水平的妊娠期糖尿病患者血糖波动特点及饮食治疗对其影响

发布时间:2018-09-03 12:41
【摘要】:研究背景:妊娠期高血糖包括糖尿病合并妊娠与妊娠期间首次发现的高血糖。2013年WHO对妊娠期新诊断的高血糖进行了重新分类,包括妊娠期间的糖尿病(diabetes mellitus in pregnancy,DIP)和妊娠期糖尿病(gestational diabetes mellitus,GDM),前者血糖诊断标准与1999年WHO的非妊娠人群糖尿病诊断标准一致。IDF的数据显示,妊娠妇女孕期高血糖世界范围内发病率为6.9%,而我国发病率高达7.0%。妊娠期糖尿病(GDM)是妊娠期最常见的代谢性疾病,指妊娠期发生或初次发现的不同程度的糖耐量异常,它的发生率呈逐年上升趋势。目前国际上对妊娠期糖尿病采用的诊断方法和标准尚未完全统一,因而报道的发生率相差较大,为1%~14%。谢幸等人指出,近年来随着人们膳食结构的改变及GDM诊断标准的重新设定,GDM的诊断率呈上升趋势,在我国GDM的发病率为1%~-5%。HAPO研究证实,妊娠期高血糖作为妊娠期间最常见的内科并发症,可导致母婴的多种不良妊娠结局,如巨大儿、先兆子痫、妊娠期高血压疾病、早产、肩难产、产伤、剖宫产、新生儿低血糖、新生儿高胆红素血症等,甚至可以导致孕妇及后代远期发生代谢紊乱。血糖波动作为糖代谢紊乱的特征性表现之一,通过氧化应激使体内氧自由基产生增多、血管内皮功能紊乱参与糖尿病血管并发症的发生发展。GDM患者的血糖波动与变异更为显著,与其胰岛p细胞功能缺陷及胰岛素抵抗相关。随着孕周的增加,妊娠中晚期垂体与胎盘分泌的多种激素增多导致生理性胰岛素抵抗不断加重,孕妇体内胰岛素分泌代偿性增加至非孕期的2-3倍,以代偿生理性的胰岛素抵抗。GDM患者体内还存在着慢性胰岛素抵抗,使胰岛素敏感性进一步下降;当胰岛p细胞功能障碍使胰岛素分泌不能满足孕期对胰岛素的需求,则导致孕期高血糖的出现。此外还有研究表明,产后恢复正常糖耐量的GDM患者在哺乳期间甚至产后1年,平均血糖水平及血糖波动仍较孕期血糖正常的妇女升高,提示GDM患者产后仍然存在着胰岛β细胞功能缺陷与胰岛素抵抗,增加了GDM患者远期发生2型糖尿病的风险。血糖监测是糖尿病治疗的手段之一,而传统的静脉血及微量血糖仪检测的血糖仅能反映瞬时的点血糖值,并不能反映线性血糖的特征及规律。随着血糖监测技术的发展,动态血糖监测(continuous glucose monitoring,CGM)这种类似于"Holter"的微创监测系统日益成熟,为目前最先进的血糖监测技术,每10s从探头获取1次电信号,每5分钟可以将信号平均值进行储存,全天共可记录288个血糖值,可以连续监测72小时患者血糖水平,其优势在于能发现自我血糖监测不易探测到的高血糖与低血糖,尤其是餐后高血糖和夜间无症状性低血糖,有助于全面分析血糖波动变化的趋势、幅度、频率、时间及其原因等。GDM与其他类型的糖尿病一样,饮食控制对糖尿病的管理至关重要。鉴于妊娠这个阶段的特殊性,除非病情非常严重,一般不采用药物或胰岛素干涉。然而GDM患者整体血糖水平升高及血糖波动增加与围产期母婴不良结局密切相关。美国糖尿病协会(American Diabetes Association,ADA)在糖尿病营养治疗指南中建议,所有GDM患者确诊时应尽可能咨询营养学家的营养意见,根据其个人目前的饮食模式、偏好及血糖控制目标制订具体营养素的分配比例,接受医学营养治疗。本研究采用CGM对GDM患者进行持续120小时以上的血糖监测,分析和探讨不同空腹血糖水平的GDM患者血糖波动特点,与妊娠结局的关系以及饮食治疗对血糖波动的影响,为妊娠期间血糖管理提供部分临床资料。一、研究目的:通过对OGTT试验当天不同空腹血糖水平GDM患者的调查和使用动态血糖监测系统(CGMS)进行血糖水平的监测,探讨不同空腹血糖水平的妊娠期糖尿病患者血糖波动特点,与妊娠结局的相关性,以及饮食治疗对血糖波动的影响,以便临床医生对GDM围生期血糖进行更好的管理,使其血糖水平在整个孕期维持在正常范围,减少不良妊娠结局的发生。二、研究对象及方法:1.研究对象:回顾性收集并分析2010年10月至2015年7月于我院住院并使用动态血糖监测系统的妊娠期高血糖患者共316名。需排除孕前诊断为1型或2型糖尿病及其他特殊类型糖尿病或糖耐量异常、合并高血压疾病或其他内分泌代谢性疾病者、其他肝肾功受损等急慢性疾病或长期服用特殊药物、影响糖类代谢等药物史者、有烟酒等不良嗜好者、双胎妊娠者以及使用CGMS少于5天时间的患者。按照美国ADA指南中妊娠期糖尿病诊断标准,最后共纳入173名GDM患者,患者平均年龄(31.6+4.8)岁,孕周(27.69+4.28)周。2.研究方法:依据OGTT试验当天空腹血浆血糖水平(FPG)不同,分为A组(FPG5.1mmol/L),共72名;B组(5.1FPG6.1mmol/L),共67名;C组(FPG6.1mmol/L),共34名。三组患者均进行一般临床资料的登记和基本实验室检查,同时采用CGMS进行动态血糖的监测,分析各项临床指标的意义及动态血糖数据。三、结果1、一般临床资料:共纳入GDM患者173名,其中A组(FPG5.1inmol/L)72名,B组(5.1≤FPG6.1mmol/L)67名,C组(FPG≥6.1mmol/L)34名。A、B、C三组间年龄、孕周、TG均无统计学差异(P0.05);随着OGTT试验当天FPG水平的升高,OGTT试验1h血糖、2小时血糖逐渐升高;B、C两组的糖化血红蛋白(HbA1C)、孕妇BMI、收缩压(SBP)、舒张压(DBP)水平及胰岛素抵抗水平(HOMA-IR)均较A组升高明显,差异有统计学意义(P0.05),而C组低密度脂蛋白水平(LDL-C)、总胆固醇水平(TC)、高密度脂蛋白水平(HDL-C)及基础胰岛素分泌水平(HOMA-β)较A组降低,差异有统计学意义(P0.05)。FPG与孕妇BM、SBP、DBP、TG、HbA1C及FINS呈正相关,与]HDDL-C呈负相关,差异均有统计学意义(P0.05)。2、CGMS参数:2.1三餐血糖特征:B、C两组早餐前血糖、早餐后1小时血糖及早餐后2小时血糖均较A组升高,差异有统计学意义(P0.05);同时C组午餐、晚餐前血糖以及餐后1小时、餐后2小时血糖亦较A、B两组升高,差异有统计学意义(P0.05);C组早餐后及午餐后血糖高峰均较A、B两组升高,差异有统计学意义(P0.05);而C组晚餐后血糖高峰亦较A组升高,差异有统计学意义(P0.05)。A、B、C三组早餐后的血糖上升较午餐及晚餐明显,差异均有统计学意义(P0.05),而三组早、中、晚三餐餐后血糖达峰时间均没有显著性差异(P0.05),同时三组在低血糖发生率上亦没有显著性差异(P0.05)。2.2血糖波动参数:C组平均血糖波动幅度(MAGE)、平均血糖水平(MBG)、血糖的时间百分比(PT BG6.7mmol/L)、血糖曲线下面积(AUC BG6.7mmol/L)、白天平均血糖(6:30-23:30)及夜间平均血糖(23:30~6:30)均较A、B两组升高,差异有统计学意义(P0.05);而A、B、C三组间血糖水平标准差(SD)、空腹血糖波动系数(FPG-CV)及日间血糖平均绝对值(MODD)均无统计学意义(P0.05);FBG与MBG、MAGE、LAGE、PT、AUC、白天MBG及夜间MBG呈正相关,差异均有统计学意义(P0.05)。3、饮食治疗3.1需胰岛素治疗率及饮食控制达标率:A组饮食治疗达标率为90.3%,需胰岛素治疗率为9.7%;B组饮食治疗达标率为83.1%,需胰岛素治疗率为26.9%;C组饮食治疗达标率为58.8%,需胰岛素治疗率达70.6%。3.2需胰岛素治疗的预测因素及饮食控制达标的危险因素:Binary logistic回归分析结果显示,PT(BG6.7mmol/L)为分餐饮食治疗达标的危险因素,而FPG为需胰岛素治疗的预测因素,差异均有统计学意义(P0.05)。3.3分餐饮食治疗后CGMS参数:(1)A组经饮食治疗后,其早餐后2小时血糖、早餐后血糖高峰及血糖波动参数MAGE.SD均较前降低,夜间MBG较治疗前升高,差异有统计学意义(P0.05)。(2)B组经饮食治疗后,其早餐后2小时血糖及血糖波动参数SD、PT. AUC、白天MBG均较治疗前降低,差异均有统计学意义(P0.05)。(3)C组经饮食治疗后,其三餐餐时血糖水平及血糖波动参数,差异均无统计学意义(P0.05)。4、妊娠结局(1)A、B、C三组在分娩时间、新生儿体重、新生儿血糖、新生儿胆红素、剖宫产率、新生儿低血糖发生率及巨大儿发生率,差异均无统计学意义(P0.05)。(2)Pearson相关分析结果显示,GDM患者空腹血糖与新生儿出生后血糖呈负相关,与剖宫产率呈正相关,差异均有统计学意义(P0.05)。(3)Binary logistic回归分析显示,OGTT试验1小时血糖、MAGE及PT值均为巨大儿发生的危险因素,而空腹血糖为剖宫产的独立危险因素,差异均有统计学意义(P0.05)。四、结论:1. CGMS可以提供完整的血糖谱信息,能发现自我血糖监测不易探测到的高血糖与低血糖,尤其是餐后高血糖和夜间无症状性低血糖,有助于全面分析血糖波动变化的趋势、幅度、频率、时间及其原因等。2.与空腹血糖正常的GDM患者相比,空腹血糖异常者有更高的BMI、SBP、 DBP.HbAlc及FINS,随着空腹血糖升高,其血糖波动指标如MBG、MAGE、 PT、AUC、白天MBG及夜间MBG均呈增加趋势。3. OGTT试验1h血糖、MAGE及PT水平均为巨大儿发生的危险因素,而空腹血糖为剖宫产的独立危险因素。4.随着空腹血糖升高,需胰岛素治疗率逐渐升高,而分餐饮食治疗达标率逐渐降低,PT(BG6.7mmol/L)为分餐饮食治疗达标的危险因素,而FPG为需胰岛素治疗的预测因素。5.对于FPG6.1mmol/L者,其血糖波动幅度大,高血糖持续时间长,胰岛素抵抗明显,且胰岛B细胞功能受损严重,饮食治疗对其效果差,建议尽早使用胰岛素治疗,尽量使其血糖水平在整个孕期内维持在正常范围,减少不良妊娠结局的发生。
[Abstract]:Background: Gestational hyperglycemia includes diabetes mellitus in pregnancy (DIP) and gestational diabetes mellitus (GDM), newly diagnosed hyperglycemia in pregnancy, which were reclassified by WHO in 2013. The IDF data show that the incidence of hyperglycemia during pregnancy in pregnant women is 6.9% worldwide, while the incidence in China is as high as 7.0%. Gestational diabetes mellitus (GDM) is the most common metabolic disorder during pregnancy, which refers to the occurrence of glucose during pregnancy or the first discovery of different levels of glucose. The incidence of gestational diabetes mellitus (GDM) is increasing year by year due to impaired tolerance. At present, the diagnostic methods and standards for gestational diabetes mellitus (GDM) have not been completely unified in the world, so the reported incidence varies greatly from 1% to 14%. Xie Xing et al. pointed out that in recent years, with the change of dietary structure and the re-setting of GDM diagnostic criteria, the diagnostic rate of GDM has assumed HAPO studies confirm that hyperglycemia during pregnancy, as the most common medical complication during pregnancy, can lead to a variety of adverse pregnancy outcomes, such as macrosomia, preeclampsia, pregnancy-induced hypertension, premature delivery, shoulder dystocia, birth trauma, cesarean section, neonatal hypoglycemia, neonatal hyperbilirubinemia. Blood glucose fluctuation is one of the characteristic manifestations of glucose metabolism disorder. Oxidative stress increases the production of oxygen free radicals in the body. Vascular endothelial dysfunction participates in the occurrence and development of diabetic vascular complications. With the increase of gestational age, the increase of hormones secreted by pituitary and placenta during the second and third trimesters of pregnancy leads to the aggravation of physiological insulin resistance, and the compensatory insulin secretion in pregnant women increases to 2-3 times of that in non-pregnant women to compensate for physiological insulin resistance. Chronic insulin resistance further reduces insulin sensitivity; when insulin secretion fails to meet insulin requirements during pregnancy due to islet P cell dysfunction, hyperglycemia occurs during pregnancy. The fluctuation of serum glucose in GDM patients was still higher than that in normal pregnant women, suggesting that there were still islet beta cell dysfunction and insulin resistance in postpartum GDM patients, which increased the risk of type 2 diabetes mellitus. With the development of blood glucose monitoring technology, continuous glucose monitoring (CGM), a kind of minimally invasive monitoring system similar to Holter, is becoming more and more mature. As the most advanced blood glucose monitoring technology at present, one electric signal is obtained from the probe every 10 seconds, every 5 seconds. The average signal can be stored in minutes, 288 blood glucose values can be recorded throughout the day, and blood glucose levels can be continuously monitored for 72 hours. Like other types of diabetes mellitus, dietary control is essential for the management of diabetes. Given the specificity of this stage of pregnancy, medication or insulin intervention is generally not used unless the condition is very serious. However, the overall blood glucose level and fluctuations in blood glucose in GDM patients increase and perimeter. Maternal and neonatal adverse outcomes are closely related. The American Diabetes Association (ADA) recommends that all patients with GDM should consult nutritionists as much as possible when they are diagnosed with diabetes and formulate specific nutrient allocations based on their current dietary patterns, preferences and glycemic control goals. In this study, CGM was used to monitor the blood glucose of GDM patients for more than 120 hours. The characteristics of blood glucose fluctuation in GDM patients with different fasting blood glucose levels, the relationship between blood glucose fluctuation and pregnancy outcome, and the effect of dietary therapy on blood glucose fluctuation were analyzed and discussed. Objective: To investigate the characteristics of blood glucose fluctuation and its correlation with pregnancy outcome in GDM patients with different fasting blood glucose levels on the day of OGTT test and to explore the effect of dietary therapy on blood glucose fluctuation by using dynamic glucose monitoring system (CGMS). So clinicians can better manage the perinatal blood glucose of GDM, keep the blood glucose level in the normal range during the whole pregnancy, and reduce the occurrence of adverse pregnancy outcomes. 2. Objects and methods: 1. Objectives: Retrospective collection and analysis of pregnancies hospitalized in our hospital from October 2010 to July 2015 using dynamic blood glucose monitoring system. A total of 316 patients with stage I hyperglycemia were excluded. Those diagnosed as type 1 or type 2 diabetes mellitus or other special types of diabetes mellitus or impaired glucose tolerance before pregnancy, complicated with hypertension or other endocrine and metabolic diseases, other acute or chronic diseases such as impaired liver and kidney function, or long-term use of special drugs, which affected the metabolism of carbohydrates and other drugs, such as cigarettes and alcoholic beverages, According to the diagnostic criteria of gestational diabetes mellitus in ADA guidelines, 173 GDM patients were enrolled with an average age of (31.6 + 4.8) years and gestational age of (27.69 + 4.28) weeks.2. Methods: According to the fasting plasma glucose level (FPG) on the day of OGTT test, they were divided into group A (FPG 5.1). Group B (5.1FPG 6.1mmol/L), 67; Group C (FPG 6.1mmol/L), 34. Three groups of patients were registered with general clinical data and basic laboratory tests, while CGMS was used to monitor the dynamic blood glucose and analyze the significance of various clinical indicators and dynamic blood glucose data. 3, Results 1, general clinical data: included in GDM There were 173 patients, 72 in group A (FPG 5.1 in mol/L), 67 in group B (5.1 < FPG 6.1 mmol/L), 34 in group C (FPG < 6.1 mmol/L). Age, gestational age, and TG were not significantly different among the three groups (P 0.05); with the increase of FPG level on the day of OGTT test, blood glucose at 1 hour and at 2 hours gradually increased in OGTT test; HbA1C in group B and C, BMI in pregnant women, BMI, and TG in group C. Systolic blood pressure (SBP), diastolic blood pressure (DBP) and insulin resistance (HOMA-IR) levels were significantly higher than those in group A (P 0.05), while low density lipoprotein (LDL-C), total cholesterol (TC), high density lipoprotein (HDL-C) and basal insulin secretion (HOMA-beta) levels in group C were significantly lower than those in group A (P 0.05). FPG was positively correlated with BM, SBP, DBP, TG, HbA1C and FINS of pregnant women, and negatively correlated with HDDL-C (P 0.05). Blood glucose and postprandial 1 hour, postprandial 2 hour blood glucose were also higher than A, B groups, the difference was statistically significant (P 0.05); group C after breakfast and after lunch blood glucose peak were higher than A, B groups, the difference was statistically significant (P 0.05); and group C after dinner blood glucose peak was also higher than A group, the difference was statistically significant (P 0.05). Glucose increased more significantly than lunch and dinner, the difference was statistically significant (P 0.05), and three groups of early, middle, and late meals after the peak time of blood glucose were not significantly different (P 0.05), while there was no significant difference in the incidence of hypoglycemia in three groups (P 0.05). 2.2 Glucose fluctuation parameters: C group average blood glucose fluctuation amplitude (MAGE), average blood glucose level (MB). G, time percentage of blood glucose (PT B G 6.7 mmol/L), area under blood glucose curve (AUC B G 6.7 mmol/L), daytime mean blood glucose (6:30-23:30) and nighttime mean blood glucose (23:30-6:30) were significantly higher in group A and group B than in group B (P 0.05), while the standard deviation of blood glucose (SD), fluctuation coefficient of fasting blood glucose (FPG-CV) and daytime blood glucose were significantly higher in group A, B and C (P 0.05). Mean absolute value of glucose (MODD) was not statistically significant (P 0.05); FBG was positively correlated with MBG, MAGE, LAGE, PT, AUC, daytime MBG and nighttime MBG, and the difference was statistically significant (P 0.05). 3.1 Dietary therapy required insulin treatment rate and dietary control compliance rate: A dietary treatment standard rate was 90.3%, the need for insulin treatment rate was 9.7%; B dietary treatment reached 9.7%. The standard rate was 83.1%, the insulin requirement rate was 26.9%; the standard rate of dietary therapy in group C was 58.8%, and the rate of insulin requirement was 70.6%. 3.2 Predictive factors of insulin requirement and risk factors of dietary control: Binary logistic regression analysis showed that PT (BG6.7 mmol/L) was the risk factor of dietary therapy and FPG was the risk factor of pancreas requirement. The predictive factors of insulin therapy were statistically significant (P 0.05). 3.3 points of CGMS parameters after dietary therapy: (1) After dietary therapy, the blood glucose 2 hours after breakfast, the blood glucose peak after breakfast and the blood glucose fluctuation parameter MAGE. SD were lower than before, and the MBG at night was higher than before, the difference was statistically significant (P 0.05). After breakfast, the blood glucose and blood glucose fluctuation parameters SD, PT. AUC, MBG during the day were significantly lower than those before treatment (P 0.05). (3) After dietary treatment, the blood glucose level and blood glucose fluctuation parameters at meals in group C had no significant difference (P 0.05). 4. Pregnancy outcomes (1) Delivery time, neonatal weight, and gestational outcomes (A, B, C). Neonatal blood glucose, neonatal bilirubin, cesarean section rate, incidence of neonatal hypoglycemia and macrosomia were not statistically significant (P 0.05). (2) Pearson correlation analysis showed that fasting blood glucose in GDM patients was negatively correlated with postnatal blood glucose, and positively correlated with cesarean section rate, the differences were statistically significant (P 0.05). (3) Binar. Y-logistic regression analysis showed that one-hour blood glucose, MAGE and PT values in OGTT test were risk factors for macrosomia, while fasting blood glucose was an independent risk factor for cesarean section. The difference was statistically significant (P Compared with hypoglycemia, especially postprandial hyperglycemia and nocturnal asymptomatic hypoglycemia, it is helpful to comprehensively analyze the trend, amplitude, frequency, time and causes of blood glucose fluctuation. 2. Compared with GDM patients with normal fasting blood glucose, fasting blood glucose abnormalities have higher BMI, SBP, DBP. HbAlc and FINS, and their blood glucose fluctuation index increases with the increase of fasting blood glucose. MBG, MAGE, PT, AUC, daytime MBG and nighttime MBG all showed an increasing trend. 3. OGTT test 1 hour blood glucose, MAGE and PT levels were risk factors for macrosomia, while fasting blood glucose was an independent risk factor for cesarean section. 4. With the increase of fasting blood glucose, the need for insulin treatment rate gradually increased, while the sub-catering treatment standard rate gradually decreased, PT (BG6.7m). Mol/L) is a risk factor for the attainment of the standard of dietary therapy, and FPG is a predictor of insulin therapy. 5. For FPG 6.1 mmol/L, the blood glucose fluctuation amplitude is large, the duration of hyperglycemia is long, insulin resistance is obvious, and the function of islet B cells is seriously damaged. Dietary therapy is not effective. It is recommended that insulin therapy be used as early as possible to make it as possible. Blood glucose levels remain normal throughout pregnancy and reduce adverse pregnancy outcomes.
【学位授予单位】:南方医科大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:R714.256

【相似文献】

相关期刊论文 前10条

1 史丽;苏胜偶;赵占胜;王丽慧;;血糖波动与糖尿病并发症的研究进展[J];中国老年学杂志;2010年17期

2 李丁;贾伟平;;血糖波动与血管并发症[J];上海医学;2011年05期

3 郑炜;龙艳;苏珂;;血糖波动与糖尿病微血管病变的研究进展[J];山东医药;2011年28期

4 郑炜;龙艳;苏珂;黄海;;血糖波动与糖尿病微血管病变的关系[J];广东医学;2011年23期

5 方福生;成晓玲;李志冰;李剑;田慧;李春霖;;老年2型糖尿病患者血糖波动性别差异的病例对照研究[J];中国药物应用与监测;2013年04期

6 徐芬娟;沈飞霞;;血糖波动的研究进展[J];中国糖尿病杂志;2014年09期

7 秦筠;王战建;;血糖波动大 糖友度夏要注意[J];糖尿病新世界;2010年07期

8 高兴;;血糖波动大 一天测几次[J];家庭医药(快乐养生);2011年01期

9 贾伟平;;血糖波动与靶器官损害[J];中华医学杂志;2006年36期

10 王建华;;血糖波动的危害及控制策略[J];实用糖尿病杂志;2007年03期

相关会议论文 前10条

1 李娟;;血糖波动的危害及控制措施[A];中华医学会第九次全国老年医学学术会议暨第三届全国老年动脉硬化与周围血管疾病专题研讨会论文汇编[C];2009年

2 詹俊鲲;刘幼硕;黄武;王艳姣;王翼;;血糖波动及其控制预测老年内科危重症短期死亡价值的研究[A];中华医学会第九次全国老年医学学术会议暨第三届全国老年动脉硬化与周围血管疾病专题研讨会论文汇编[C];2009年

3 贾伟平;;血糖波动与靶器官损害[A];2008内分泌代谢性疾病系列研讨会暨中青年英文论坛论文汇编[C];2008年

4 童南伟;;血糖波动与血管病变的因果关系——缺乏强证据[A];2008内分泌代谢性疾病系列研讨会暨中青年英文论坛论文汇编[C];2008年

5 汪nr;吴汉妮;;不同血糖波动监测指标在糖尿病血糖监测中的实际应用[A];中华医学会第十次全国内分泌学学术会议论文汇编[C];2011年

6 唐健;;血糖波动与危重患者死亡率相关性的研究[A];中华医学会第五次全国重症医学大会论文汇编[C];2011年

7 游为;邹秀兰;杨建明;;血糖波动对人外周血单核细胞的损伤及机制[A];中华医学会第十二次全国内分泌学学术会议论文汇编[C];2013年

8 王晓敏;孟作龙;周颖;杨惠珍;赵艳;韩月香;张立莹;何柏林;;动态血糖波动与血清C反应蛋白、白介素-6、白介素-8、肿瘤坏死因子-α的相关性研究[A];中华医学会第十二次全国内分泌学学术会议论文汇编[C];2013年

9 魏翠英;何忠明;任丽珏;纪立农;韩芳;;阻塞性睡眠呼吸暂停综合征对2型糖尿病患者动态血糖及血糖波动度的影响[A];中华医学会第十一次全国内分泌学学术会议论文汇编[C];2012年

10 章晓燕;钟远;苗雅;朱洁华;燕虹;金俊;王蓓云;胡廷军;;血糖波动对老年2型糖尿病患者认知功能的影响[A];第三届江浙沪三地老年医学高峰论坛暨2012年浙江省老年医学学术年会论文集[C];2012年

相关重要报纸文章 前10条

1 王霞;心理压抑也会使血糖波动[N];医药养生保健报;2007年

2 健康时报记者  郑帆影;经期血糖波动不用慌[N];健康时报;2006年

3 本报记者  应洪舒;精确“把脉”血糖波动[N];中国医药报;2006年

4 二炮总医院内分泌科主任 李全民;病情加重有征兆[N];健康时报;2010年

5 健康时报记者 白轶南;血糖波动别服雌激素[N];健康时报;2007年

6 王建华;血糖波动比高血糖更可怕[N];农村医药报(汉);2007年

7 许晓华;血糖波动做做“馒头餐”[N];健康时报;2007年

8 韩咏霞;血糖波动:激素药物在捣乱[N];健康时报;2006年

9 王建华;糖尿病:如何应对血糖波动[N];健康报;2005年

10 王建华;更年期血糖波动是“难关”[N];健康时报;2007年

相关博士学位论文 前6条

1 方福生;老年2型糖尿病血糖波动的临床特征及控制目标的初步探讨[D];中国人民解放军军医进修学院;2011年

2 顾朋颖;骨钙素在男性2型糖尿病中的水平变化及其与大血管病变关系的临床研究[D];安徽医科大学;2015年

3 宋建;血糖波动所致氧化应激对ARPE-19细胞自噬功能的影响及其机制研究[D];天津医科大学;2016年

4 廖洁;血糖波动对糖尿病内皮依赖性血管舒张功能的影响及机制研究[D];中南大学;2010年

5 康怡;不同糖调节受损人群血糖波动与氧化应激和胰岛功能的相关性研究[D];中国人民解放军军医进修学院;2009年

6 刘丽萍;血糖波动调控对大鼠全脑缺血后海马神经元损伤的影响[D];中国人民解放军军医进修学院;2008年

相关硕士学位论文 前10条

1 丁林;2型糖尿病合并冠心病患者血糖波动与vWF、HMGB1及冠脉病变的相关性研究[D];安徽医科大学;2015年

2 彭永;2型糖尿病下肢血管病变与血糖波动的相关性及硫辛酸的干预研究[D];安徽医科大学;2015年

3 王亚双;血糖波动对2型糖尿病患者下肢血管内皮功能的影响及胰岛素泵强化干预的研究[D];山西医科大学;2015年

4 陈少敏;血糖波动对2型糖尿病患者颈动脉粥样硬化程度的影响及胰岛素泵短期强化干预的研究[D];山西医科大学;2015年

5 马艳霞;血糖波动对2型糖尿病合并急性脑梗死患者溶栓效果及预后的影响[D];山西医科大学;2015年

6 马香香;血糖波动对糖尿病大鼠周围神经病变的影响[D];郑州大学;2016年

7 李素芬;不同空腹血糖水平的妊娠期糖尿病患者血糖波动特点及饮食治疗对其影响[D];南方医科大学;2016年

8 周淑晶;血糖波动对2型糖尿病冠脉病变严重程度的影响[D];山西医科大学;2012年

9 郑炜;血糖波动与糖尿病微血管病变相关性的研究[D];桂林医学院;2012年

10 马丁;血糖波动系数与颈动脉斑块相关性研究[D];新疆医科大学;2013年



本文编号:2220007

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/fuchankeerkelunwen/2220007.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户774c2***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com