体外缺氧诱导子痫前期滋养细胞模型优化及代谢组学鉴定
[Abstract]:Objective: to study the optimization of hypoxia-induced preeclampsia model with different treatments of trophoblastic cells in vitro. Methods: HTR8/SVneo trophoblast cells were cultured in 1%O2 (hypoxic environment) and 21%O2 (normoxic environment) incubators for 1 h (H _ 1N _ 1) or 2 h (H _ 2N _ 2), respectively. One hour after hypoxia (H1R1), 2 hours after hypoxia (H2R2), 1 hour after H1R1 (H1R1H1), 2 hours after H2R2 (H2R2H2), H1R12 (H1R1H1R1) and H2R22 (H2R2H2R2). Reoxygenation 6 h (H2R6) after 2 h hypoxia, 24 h continuous hypoxia, 4 h normoxic (N4), 8 h (N8) and 24 h (Normoxia),) Then Western blot was used to detect the phosphorylation of adenylate activated protein kinase (AMP-activated protein kinase,AMPK) in order to verify the effect of each group on the induction of trophoblastic energy stress. HTR8/SVneo trophoblastic cells were cultured in normoxic or anoxic environment for 24 hours, and then were analyzed by GC-MS (gas chromatography mass spectrum,GS-MS). To verify whether the up-regulation of AMPK phosphorylation is consistent with the changes of trophoblast metabolism. Results: the activity of AMPK in hypoxia group (1.615 卤0.111) was significantly higher than that in normoxic group (1.000 卤0.107) and hypoxia reoxygenation group (1.277 卤0.113). The metabolites increased significantly during hypoxia were 4-methyl-2-pentanoic acid (log22.597 1.377), hydrated glyoxylic acid (log22.483 1.312), histidine (log21.188 0.248), phenylalanine (log21.262 0.335). Valine (log21.518 = 0.602), L-leucine (log21.519 = 0.603), acetylserine (log21.691 = 0.758), serine (log21.783 = 0.834), cysteine (log21.851 = 0.889), valine (log21.518 = 0.602), L-leucine (log21.519), acetylserine (log21.691), serine (log21.783), cysteine (log21.851), Methionine (log22.072 1.051), ornithine (log22.251 1.170), etc. However, log20.127 was-2.983, log20.334 was-1.583, log20.600 was-0.738, conjugated linoleic acid was-0.557, and palmitoic acid was-2.983, log20.334 was-1.583, log20.600 was-0.738, conjugated linoleic acid was-0.557, and palmitoic acid was-2.983, log20.334 was-1.583, log20.600 was-0.738, conjugated linoleic acid was-0.557. Cis-octadecenoic acid (log20.711 = -0.492), 9-heptadecenoic acid (log20.782 = -0.355), 22 carbohexaenoic acid (log20.829 = -0.271), eicosapentaenoic acid (log20.841 = -0.250), Erucic acid (log20.844 =-0.244), 22 carbapentaenoic acid (log20.898 = -0.156), citric acid (log20.279 = -1.842), malic acid (log20.208 = -2.264), succinic acid (log20.254 = -1.980), Cis aconitic acid (log20.260 =-1.946), 尾 -citrate-L-glutamic acid (log20.093), 尾 -alanine (log20.139 = -2.851), cystathione (log20.267 = -1.904), 尾 -citrate-L-glutamic acid (log20.093), 尾 -alanine (-2.851), cystathion (-1.904). Cis-4-hydroxyproline (log20.500 =-1.000) decreased significantly during hypoxia. Metabolic pathway analysis showed that nucleotide metabolism [log2 (1.8111.149) was 0.857U 0.201] and energy metabolism (log2 (1.510U 1.173U 1.149) was 0.5950.2300.201, respectively) in trophoblastic cells under hypoxia. Vitamin metabolism [log2 (1.045 ~ 1.052 ~ 1.125) = 0.064 ~ 0.073 ~ 0.170] and amino acid metabolism [log2 (1.245 ~ 1.020 ~ 1.027 ~ 1.127 ~ 1.127 ~ 1.076) = 0.316 ~ 0.028 ~ 0.039 ~ 0.1670.1730.106], respectively. Signal transduction (log21.046 = 0.065) and protein translation (log21.026 = 0.037) were activated, while carbohydrate [log2 (0.857N) 0.857U 0.799) was -0.222kg-0.222kg-0.323]. Fatty acids [log2 (0.944 ~ 0.912 ~ (0.826) were -0.083 ~ (-0.133) ~ 0.276] and endocrine metabolism [log2 _ (0.885) ~ (0.799) ~ (0.799) were -0.176 ~ (-0.323), respectively. The metabolic pathways such as-0.323 and other secondary metabolites biosynthesis [log2 (0. 947 0. 871%) were-0. 079-0. 199-0. 428] were significantly inhibited. Conclusion: hypoxia model alone is more suitable for in vitro study of preeclampsia pathophysiology.
【作者单位】: 重庆医科大学附属第二医院妇产科重庆医科大学"中国-加拿大-新西兰"联合母胎医学实验室;
【基金】:国家自然科学基金面上资助项目(编号:81671488) 重庆市教育委员会资助项目(编号:KJ1500223) 重庆医科大学资助项目(编号:CYYQ201507)
【分类号】:R714.244
【相似文献】
相关期刊论文 前10条
1 郭丽娜;影响滋养细胞侵蚀能力的因素及其与妊高征的关系[J];国外医学.妇幼保健分册;2003年01期
2 王鸿艳;滋养细胞与妊娠高血压综合征发病的关系[J];实用医学杂志;2003年03期
3 周纯芝,杨通明,唐石初,吴泽惠,刘世平;彩色多普勒血流显像对滋养细胞肿瘤化疗前后应用的研究[J];浙江实用医学;2004年02期
4 胡蓉,李笑天,张炜;氧对滋养细胞功能的调节与妊高征[J];国外医学.妇产科学分册;2004年03期
5 孙云燕,丰有吉,鹿欣;滋养细胞与妊娠高血压综合征研究进展[J];国外医学.妇产科学分册;2004年02期
6 王莉,刘风花;数字减影血管造影在滋养细胞肿瘤早期诊断中的应用[J];郑州大学学报(医学版);2004年05期
7 Carlini L.;Villa A.;Busci L. ;朱国栋;;选择性子宫动脉栓塞:低风险妊娠滋养细胞疾病的新疗法[J];世界核心医学期刊文摘(妇产科学分册);2006年11期
8 李利玲;乔福元;;滋养细胞浸润调控因子与妊娠期高血压疾病[J];中国优生与遗传杂志;2007年10期
9 黄玲玲;王素梅;唐卉;;镁离子对滋养细胞在不同培养环境中生存能力的影响[J];中华妇幼临床医学杂志(电子版);2010年04期
10 周宝琴;滋养细胞肿瘤化疗失败44例的原因分析[J];交通医学;1995年02期
相关会议论文 前10条
1 郭培奋;贺银燕;李大金;;人早孕滋养细胞表达胸腺基质淋巴细胞生成素及其受体[A];第一届中华医学会生殖医学分会、中国动物学会生殖生物学分会联合年会论文汇编[C];2007年
2 张弘;林其德;;妊娠高血压综合征患者滋养细胞浸润相关基因及其蛋白表达[A];澳门、香港、内地生殖健康研讨会论文集[C];2004年
3 黄煜;李大金;;趋化因子CXCL16对早孕期人滋养细胞生物学功能的自分泌调控作用[A];首届沪浙妇产科学术论坛暨2006年浙江省妇产科学学术年会论文汇编[C];2006年
4 吴婷;尚涛;;不同浓度脂多糖对滋养细胞系JEG-3凋亡的影响[A];东北三省第四届妇产科学术会议论文汇编[C];2008年
5 李素平;马毅;侯丽辉;吴效科;;TNF-α对早孕滋养细胞激素分泌的影响[A];全国第七届中西医结合妇产科学术会议论文及摘要集[C];2007年
6 刁振宇;戴毅敏;邱智华;胡娅莉;;内毒素LPS通过miR-155参与滋养细胞功能的研究[A];中华医学会第三次全国妊娠期高血压疾病学术研讨会论文汇编[C];2011年
7 孙彤;;胎盘部位滋养细胞肿瘤的超声表现[A];中华医学会第十三次全国超声医学学术会议论文汇编[C];2013年
8 李大金;;母-胎免疫调节机理研究-从基础到临床[A];首届沪浙妇产科学术论坛暨2006年浙江省妇产科学学术年会论文汇编[C];2006年
9 杜美蓉;周雯惠;董琳;朱晓勇;李大金;;ERK1/2与Ca~(2+)/Calcineurin/NFAT信号差异调节环孢素A促进的人滋养细胞体外增殖与侵袭[A];第一届中华医学会生殖医学分会、中国动物学会生殖生物学分会联合年会论文汇编[C];2007年
10 解奇;杨美香;孙锦堂;张岩;毛海婷;邵倩倩;董柏华;孔北华;曲迅;;雌、孕激素通过腺苷A_(2B)R通路调节JEG-3滋养细胞系上调MMP-2的表达[A];第六届全国免疫学学术大会论文集[C];2008年
相关重要报纸文章 前1条
1 王慧灵;妊娠滋养细胞病[N];农村医药报(汉);2009年
相关博士学位论文 前10条
1 韩磊;RhoC调控人滋养细胞迁移的机制及子痫前期患者临床资料分析[D];第三军医大学;2015年
2 刘青;shRNA靶向诱导maspin基因启动子甲基化调控子痫前期滋养细胞浸润的研究[D];华中科技大学;2015年
3 陈莹;甲基化修饰的WIF1对滋养细胞功能的调控及在子痫前期中的作用机制研究[D];重庆医科大学;2015年
4 童晓嵋;钙结合蛋白S100P在胎盘滋养细胞的表达与功能研究[D];浙江大学;2016年
5 杜蒙恺;PLAC1与妊娠期糖尿病相关研究[D];浙江大学;2017年
6 戴毅敏;内毒素通过微小RNA-155参与滋养细胞重铸的研究[D];南京大学;2011年
7 徐京晶;绒毛外滋养细胞在妊娠子宫螺旋动脉重塑过程中的作用机制研究[D];华中科技大学;2010年
8 程琰;14-3-3 tau蛋白对滋养细胞生物学行为影响的研究[D];复旦大学;2009年
9 罗健英;MMP9/TIMP1在缺氧滋养细胞中的表达与子痫前期关系的研究[D];华中科技大学;2010年
10 高天e,
本文编号:2387962
本文链接:https://www.wllwen.com/yixuelunwen/fuchankeerkelunwen/2387962.html