当前位置:主页 > 医学论文 > 基础医学论文 >

铜绿假脓单胞菌群体感应对免疫反应影响的定性研究

发布时间:2018-11-02 06:53
【摘要】:基于铜绿假脓单胞菌群体感应机理及群体感应信号分子具有免疫调控功能这一生物学行为,本文研究了几类铜绿假脓单胞菌群体感应对免疫反应影响的数学模型的动力学行为,主要讨论了模型平衡点的存在性、稳定性及分歧行为。第一章主要介绍了铜绿假脓单胞菌及群体感应相关背景知识,铜绿假脓单胞菌群体感应数学模型的研究进展及相关的理论基础。第二章建立了一类数学模型描述群体感应信号分子的免疫调控机理,分析了模型平衡点的存在性及其渐近稳定性,并通过数值模拟验证了理论结果的准确性。有趣的是,我们发现当0 1?(29)1,?(27)1,(35)(29)0时,存在双稳现象。为进一步研究双稳态下平衡点的性质,通过构造李雅普诺夫函数,对双稳态下无菌平衡点和正平衡点的吸引域进行估计,并运用Matlab的工具箱GLOPTIPOLY及SeDuMi对双稳态下的吸引域进行仿真分析。此外,运用MatCont分析了模型可能存在的分歧现象,得到了单参数分歧图、双参数分歧图。本文的第三章主要研究了一类群体感应信号分子调控细菌与免疫系统间竞争的数学模型,利用Lyapunov方法证明了无菌平衡点的稳定性;分析了正平衡点的存在条件及稳定性,并证明了正平衡点前后向分歧的存在性,利用MatCont,通过数值模拟进一步探测模型复杂的动力学行为,得到系统存在的三种动力学性态,包括前、后向分歧以及双稳态现象。
[Abstract]:Based on the population sensing mechanism of Pseudomonas aeruginosa and the biological behavior of population sensing signaling molecules with immunomodulatory function, the dynamic behaviors of several mathematical models of Pseudomonas aeruginosa group somatosensory response to immune response were studied in this paper. The existence, stability and bifurcation behavior of equilibrium point are discussed. The first chapter mainly introduces the background knowledge of Pseudomonas aeruginosa and its population induction, the research progress of mathematical model of Pseudomonas aeruginosa population induction and the related theoretical basis. In chapter 2, a kind of mathematical model is established to describe the immune regulation mechanism of population sensing signal molecules. The existence and asymptotic stability of the equilibrium point of the model are analyzed, and the accuracy of the theoretical results is verified by numerical simulation. Interestingly, we find that there is bistability when 0? (29) 1? (27) 1, (35) (29) 0. In order to further study the properties of equilibrium point in bistable state, the attractive regions of aseptic equilibrium point and positive equilibrium point in bistable state are estimated by constructing Lyapunov function. Matlab toolbox GLOPTIPOLY and SeDuMi are used to simulate the attraction region in bistable state. In addition, the possible bifurcation phenomena of the model are analyzed by using MatCont, and the single parameter bifurcation graph and the double parameter bifurcation graph are obtained. In the third chapter, a mathematical model of competition between bacteria and immune system is studied, and the stability of aseptic equilibrium point is proved by Lyapunov method. The existence condition and stability of the positive equilibrium point are analyzed, and the existence of the forward and backward bifurcation of the positive equilibrium point is proved. The complex dynamic behavior of the model is further detected by MatCont, numerical simulation, and three dynamic states of the system are obtained. It includes forward, backward bifurcation and bistable phenomena.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R378.991

【参考文献】

相关期刊论文 前8条

1 张仲华;孟庆勋;锁要红;;一类具有病菌信息交流机制的时滞模型的稳定性[J];上海大学学报(自然科学版);2013年03期

2 卫阳;张亚妮;段康民;;铜绿假单胞菌铁与群体感应系统的调节[J];西北大学学报(自然科学版);2010年05期

3 梁海华;沈立新;马艳玲;段康民;;铜绿假单胞菌中群体感应系统研究进展[J];微生物学通报;2010年07期

4 张仲华;锁要红;;一类具有群体感应机理的传染病模型渐近分析[J];纺织高校基础科学学报;2009年03期

5 李曼;邱健;宋水山;;真菌中的群体感应系统[J];微生物学通报;2007年03期

6 刘鹏;张月娟;赵廷昌;;细菌群体感应系统的研究进展[J];中国农学通报;2007年06期

7 徐凯进;李兰娟;邢卉春;吴仲文;俞云松;盛吉芳;陈亚岗;;细菌的群体感应系统[J];中华传染病杂志;2006年05期

8 李承光;贾振华;邱健;张霞;马宏;冀营光;宋水山;;细菌群体感应系统研究进展及其应用[J];生物技术通报;2006年01期

相关硕士学位论文 前1条

1 王秀男;HIV感染动力学模型分析[D];西南大学;2013年



本文编号:2305266

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/jichuyixue/2305266.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ea862***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com