当前位置:主页 > 医学论文 > 口腔论文 >

“钛骨”表面纳米羟基磷灰石涂层的制备及对雪旺细胞黏附增殖的影响

发布时间:2018-07-28 13:21
【摘要】:背景:随着牙种植体机制基础研究的发展和材料学的进步,种植体支持的义齿得到越来越多的临床应用。经过20多年的发展,骨结合种植义齿目前已成为临床治疗中不可缺少的一部分,成为牙列缺损和牙列缺失的首要修复方式[1]。种植体与天然牙相比周围缺乏牙周膜本体感受器,感知觉阈值比天然牙高[2],且生理动度有限,当所受外力较大时,会造成周围骨破坏,最终导致种植体失败,降低种植的长期成功率。因此研究种植体周围神经再生具有重要意义。种植体的表面特征研究一直是人们关注的焦点。目前,为了提高材料的生物性能,在金属植入材料的表面引入生物活性涂层,是生物医学研究领域中的研究热点[3]。钛(合金)羟基磷灰石复合材料不仅具有小密度、低毒性、优良的生物相容性和较强的抗腐蚀性等钛(合金)的特征,还具备羟基磷灰石的高生物学相容性、骨传导性和生物活性等特征,以满足骨及牙齿等的修复与替换的生物学性能和力学需求[4-6],而且羟基磷灰石种植体表面可以促进神经细胞的生物学行为和神经传导性能[7-8]。已被广泛应用于牙种植领域中,已成为一种重要的临床生物材料产品。实验目的与方法:第一部分:羟基磷灰石涂层的制备及不同沉积时间对“钛骨”表面电化学沉积羟基磷灰石涂层的理化性质的影响。在保证其它实验参数不变的情况下,运用计时电位—电化学沉积法在“钛骨”表面构建不同沉积时间的羟基磷灰石涂层,从0-80min共分为5组。研究电解液时间对电沉积涂层的形貌、化学成分及亲水性的影响,从而确定最优的电沉积参数。第二部分:改良“钛骨”种植体对雪旺细胞黏附,增殖的影响通过细胞黏附实验选出利于细胞黏附,增殖的涂层表面,为改良“钛骨”种植体表面设计提供实验依据。实验结果:1、不同沉积时间沉积涂层为羟基磷灰石,涂层厚度随沉积时间的增加而增厚,沉积时间为40min-80min的涂层厚度为0.8-3.5μm。沉积时间为20min组,材料表面可见晶体呈颗粒状杂乱分布,排列较稀疏。40/60/80min组可见“钛骨”表面微纳米级大小的晶体排列有序,沉积时间越长,晶粒排列越密集,形成交联多孔的网状表面,晶粒大小约为80-100nm,均匀分布;2、对照组“钛骨”表面是疏水表面,电沉积羟基磷灰石涂层后变为亲水表面。沉积时间越长,涂层越厚,接触角越小。其中40/60/80min组表现出明显的亲水性;3、纳米羟基磷灰石改良“钛骨”表面,雪旺细胞黏附形态较好,细胞有粗大的伪足附着在多孔网状表面,与涂层相融合且细胞形态及直径大小均优于相应纯钛涂层组;4、40/60/80min处理的羟基磷灰石“钛骨”表面均可促进雪旺细胞的粘附和增殖。实验结论:1、通过电化学沉积法可以在“钛骨”表面沉积羟基磷灰石,40/60/80min时晶体排列密集,分布均一,呈相互交联多孔网状结构表面,晶体大小约80-100nm,涂层厚度随沉积时间的增加而增厚;2、纳米羟基磷灰石改良“钛骨”表面为亲水表面,40/60/80min组亲水性显著;3、40/60/80min处理的羟基磷灰石“钛骨”表面均可促进雪旺细胞的粘附和增殖;
[Abstract]:Background: with the development of the basic research of dental implant mechanism and the progress of material science, implant supported denture has been more and more clinical. After more than 20 years of development, bone combined implant has become an indispensable part of clinical treatment, and become the primary repair mode of dentition loss and dentition loss [1]. implant. There is a lack of periodontal ligament proprioceptor around natural teeth. The perception threshold is [2] higher than that of natural teeth, and its physiological mobility is limited. When the external force is large, it will cause destruction of the surrounding bone and eventually lead to the failure of the implant and reduce the long-term success rate of the implant. Therefore, it is of great significance to study the regeneration of the nerve around the implant. At present, in order to improve the biological properties of materials, the introduction of bioactive coatings on the surface of metal implanted materials is a hot spot in the field of biomedical research, [3]. titanium (alloy) hydroxyapatite composite not only has small density, low toxicity, excellent biocompatibility and strong anti-corruption. The characteristics of corrosion, such as titanium (alloy), are also characterized by high biological compatibility, bone conductivity and biological activity of hydroxyapatite, to meet the biological and mechanical requirements of the repair and replacement of bone and teeth [4-6], and the hydroxyapatite implant surface can promote the biological behavior and nerve conduction performance of the nerve cells [7- 8]. has been widely used in dental implant field and has become an important clinical biomaterial product. Experimental purposes and methods: the first part: the preparation of hydroxyapatite coating and the effect of different deposition time on the physical and chemical properties of the electrodeposited hydroxyapatite coating on the "titanium bone" surface. The hydroxyapatite coating on the surface of "titanium bone" was constructed on the surface of "titanium bone" by Chrono potential electrodeposition, and divided into 5 groups from 0-80min. The effect of electrolyte time on the morphology, chemical composition and hydrophilicity of the electrodeposited coating was studied to determine the optimal electrodeposition parameters. The second part: improving the cultivation of "titanium bone" The effect of body adhesion to Schwann cells and proliferation was selected by cell adhesion experiment to select the surface of cell adhesion and proliferation, which provided experimental basis for improving the surface design of "titanium bone" implant. The experimental results were as follows: 1, the coating was deposited as hydroxyapatite at different deposition time, and the thickness of the coating thickened with the increase of deposition time, and the deposition time was 40. The coating thickness of min-80min is 0.8-3.5 M. deposition time of 20min group, and the crystal shows granular and random distribution on the surface of the material. The thin and nanoscale crystals of the "titanium bone" surface are arranged in a more orderly arrangement than the sparse.40/60/80min group. The longer the deposition time is, the more dense the grain is arranged, and the cross-linked porous network surface is formed. The size of the grain is about 8. 2, 2, the surface of the titanium bone in the control group is a hydrophobic surface, and the electrodeposited hydroxyapatite coating becomes hydrophilic surface. The longer the deposition time is, the thicker the coating is, the smaller the contact angle is, and the 40/60/80min group shows obvious hydrophilicity, and the nano hydroxyapatite improves the "titanium bone" surface and the cell adhesion of Schwann cells is better. The thick pseudo foot attached to the porous network surface, fused with the coating, and the morphology and diameter of the cells were superior to that of the corresponding pure titanium coating group; the surface of the hydroxyapatite "titanium bone" treated by 4,40/60/80min could promote the adhesion and proliferation of Schwann cells. Experimental conclusion: 1, electrochemistry deposition can be used to deposit hydroxyl on the surface of "titanium bone" by electrochemical deposition. The basic apatite, 40/60/80min, is densely arranged and distributes uniformly. The surface of the porous network structure is cross-linked with each other. The size of the crystal is about 80-100nm. The thickness of the coating thickens with the increase of the deposition time. 2, the nano hydroxyapatite improves the surface of the titanium bone as the hydrophilic surface, and the hydrophilic property of the 40/60/ 80min group is significant; the hydroxyapatite treated by 3,40/60/80min is the hydroxyapatite treated. The surface of titanium bone can promote the adhesion and proliferation of Schwann cells.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R783.6

【相似文献】

相关期刊论文 前10条

1 刘如光,李家俊,赵乃勤;用电化学方法合成羟基磷灰石涂层的研究进展[J];材料保护;2004年07期

2 王仲军;刘大成;彭宝利;;羟基磷灰石涂层的制备[J];佛山陶瓷;2006年05期

3 楼维维;董伊雯;金逸凡;刘劲松;;掺镧羟基磷灰石涂层的合成和性能表征[J];中国组织工程研究;2014年08期

4 李慕勤,尚大山,刘冬梅,于立学,任福;电结晶羟基磷灰石涂层结构的研究[J];中国表面工程;2003年01期

5 尹燕;马宝玉;夏天东;夏亚一;达国祖;;医用镍钛形状记忆合金羟基磷灰石涂层的制备及其生物活性[J];中国组织工程研究与临床康复;2011年34期

6 毛大立,曹海萍,常程康,顾云峰;羟基磷灰石涂层的骨结合行为[J];上海交通大学学报;2003年02期

7 成国煌,陈晓明,焦玉恒,吴晨曦;等离子喷涂羟基磷灰石涂层[J];山东陶瓷;2003年03期

8 朱庆霞;冯青;汪和平;;羟基磷灰石涂层的制备及其研究进展[J];中国陶瓷;2008年03期

9 黄永玲;羟基磷灰石涂层人工关节应用研究[J];材料工程;2002年11期

10 龚沛;王欣宇;郭洁;;通过仿生法在纯镁表面制备羟基磷灰石涂层的研究[J];化工中间体;2008年03期

相关会议论文 前10条

1 胡德平;姚再起;齐民;;羟基磷灰石涂层技术的研究进展[A];大连理工大学生物医学工程学术论文集(第2卷)[C];2005年

2 曹阳;林强;张波;王力平;李旭东;杨帮成;李劲;王赵;郝万军;杨亮;陈继镛;张兴栋;;不同后处理对等离子喷涂羟基磷灰石涂层力学性能的影响研究[A];2004年材料科学与工程新进展[C];2004年

3 憨勇;;羟基磷灰石涂层在类体液环境中结构强度退化机理研究[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年

4 时海燕;胡仁;庄燕燕;林昌健;;电化学制备羟基磷灰石涂层的生物活性研究[A];第五届中国功能材料及其应用学术会议论文集Ⅱ[C];2004年

5 黄金聪;王周成;;悬浮液特性对电泳沉积羟基磷灰石涂层的影响[A];中国化学会第27届学术年会第10分会场摘要集[C];2010年

6 苏艳君;姚江武;;电化学沉积羟基磷灰石涂层于石英晶体微天平芯片及表面等离子体共振传感芯片过程研究[A];2009“牙齿颜色的识别与美学再现”专题研讨会论文汇编[C];2009年

7 曹阳;张波;王力平;林强;李旭东;杨帮成;郝万军;李劲;王赵;陈继镛;张兴栋;;不同后处理对等离子喷涂羟基磷灰石涂层力学性能的影响研究[A];2004年中国材料研讨会论文摘要集[C];2004年

8 李慕勤;尚大山;刘冬梅;于立学;任福;;电结晶羟基磷灰石涂层结构的研究[A];2002年材料科学与工程新进展(上)——2002年中国材料研讨会论文集[C];2002年

9 陈云琳;师钟丽;林调;史明敏;胡斌;严世贵;;羟基磷灰石涂层相对于多孔涂层在全髋置换中的优势[A];2013中国工程院科技论坛暨浙江省骨科学学术年会论文摘要集[C];2013年

10 刘安;桂力;冯波;;医用钛表面生物分子自组装薄膜的制备[A];中国生物医学工程学会第六次会员代表大会暨学术会议论文摘要汇编[C];2004年

相关博士学位论文 前1条

1 路荣建;微纳形貌钽及钽/羟基磷灰石涂层对骨髓间充质干细胞生物学活性的影响[D];中国人民解放军医学院;2015年

相关硕士学位论文 前10条

1 陈伟;负载银的取向排列羟基磷灰石涂层的可控制备、形成机理及生物学性能研究[D];上海师范大学;2015年

2 林炳鹏;多巴胺诱导AZ31镁合金仿生羟基磷灰石涂层的制备及性能研究[D];兰州大学;2016年

3 代爱梅;纳米羟基磷灰石涂层的制备、微分析及生物活性研究[D];河北大学;2016年

4 孟帅岑;“钛骨”表面纳米羟基磷灰石涂层的制备及对雪旺细胞黏附增殖的影响[D];吉林大学;2017年

5 王月勤;电沉积方法制备钛基材羟基磷灰石涂层[D];南京航空航天大学;2007年

6 王芹;纯钛表面纳米掺镁羟基磷灰石涂层的构建及评价[D];浙江大学;2013年

7 廖慧;电化学沉积纳米羟基磷灰石涂层的研究[D];上海师范大学;2005年

8 陈云琳;初次全髋置换中羟基磷灰石涂层是否优于多孔涂层的meta分析[D];浙江大学;2015年

9 李虎强;羟基磷灰石涂层制备系统开发与实验研究[D];吉林大学;2011年

10 杨成鑫;柠檬酸盐对钛表面电化学沉积纳米羟基磷灰石涂层的影响[D];浙江大学;2010年



本文编号:2150284

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/kouq/2150284.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户35ed0***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com