生理信号的数据采集及其在情绪识别中的应用
[Abstract]:Being in negative mood for a long time can lead to disorder of emotional system and affect environmental adaptability and daily learning. However, the emotion of this kind of individual is difficult to be detected by the outside world. Multi-physiological signal emotion recognition is to monitor the changes of physiological indexes by analyzing the characteristic parameters or the combination of characteristic parameters of multi-physiological signals, so as to feedback the real emotional state of the individual. Psychological intervention is to deal with problems through psychological theory and methods, so that people's unbalanced cognitive and emotional state tends to stabilize. In this paper, we use chaos theory to recognize individual's multi-physiological signals, and on the basis of verifying the feasibility of this method, we give psychological counseling to individuals whose negative emotion is identified by psychological intervention. Firstly, physiological signal instruments were used to extract multiple physiological signals (ECG, respiratory signals) from two volunteers (a man and a woman) under four different emotions (sadness, pleasure, anger, happiness). Chaos characteristic parameters (maximum Lyapunov exponent, information entropy, approximate entropy, box and complexity). Secondly, chaotic feature matrix is composed of the extracted chaotic characteristic parameters, and four kinds of emotions are identified and classified by using C5.0 decision tree classifier. The experimental results show that the recognition rate of C5.0 decision tree is 91% and 93% respectively for emotion recognition based on multi-feature parameters of chaos theory, and the gender difference is not significant. On this basis, a person who identified the negative emotion as a result was tracked, and the hot spots that caused the negative emotion were found by means of cognitive behavioral therapy and physiological signal instrument. PR-II biofeedback relaxation training instrument and psychological intervention were used to provide psychological guidance to individuals. The results showed that the recognition rate of positive emotion increased from 60% to 100%, which indicated that psychological intervention based on emotion recognition had a better effect of emotional intervention.
【学位授予单位】:长春大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R318;TP274.2
【参考文献】
相关期刊论文 前10条
1 聂春燕;贺方;佐藤礼华;;多种生理信号的采集及其在情绪分析中应用[J];长春大学学报;2016年06期
2 赵国朕;宋金晶;葛燕;刘永进;姚林;文涛;;基于生理大数据的情绪识别研究进展[J];计算机研究与发展;2016年01期
3 唐嵩潇;;情绪识别研究述评[J];吉林化工学院学报;2015年10期
4 尧新瑜;李雪梅;;“精神助产术”及其应用课例[J];新课程研究(下旬刊);2014年05期
5 舒娜;张晓星;孙才新;;自治混沌系统中抗噪声干扰的频率检测模型[J];重庆大学学报;2013年06期
6 孙洪央;徐祖洋;王静;雷沛;吴开杰;柴新禹;;基于PSO-kNN算法与多生理参数的压力状态下情绪识别[J];中国医疗器械杂志;2013年02期
7 李章勇;姜瑜;王伟;刘亚东;;基于小波变换的皮电信号滤波及奇异性检测[J];科学技术与工程;2013年04期
8 王爱平;万国伟;程志全;李思昆;;支持在线学习的增量式极端随机森林分类器[J];软件学报;2011年09期
9 王晓昕;;仿生色彩设计应用研究[J];数位时尚(新视觉艺术);2011年01期
10 ;The interaction between cognition and emotion[J];Chinese Science Bulletin;2009年22期
相关会议论文 前1条
1 郝连旺;宋涛;;呼吸信号检测方法的研究[A];第十届全国敏感元件与传感器学术会议论文集[C];2007年
相关博士学位论文 前1条
1 温万惠;基于生理信号的情感识别方法研究[D];西南大学;2010年
相关硕士学位论文 前7条
1 何成;基于多生理信号的情绪识别方法研究[D];浙江大学;2016年
2 郭漩;基于人工神经网络的多生理信号情绪识别系统设计与实现[D];华东师范大学;2014年
3 曹梦思;基于脑电信号的中文情感词的情感识别[D];北京邮电大学;2012年
4 徐亚;基于心电信号的情感识别研究[D];西南大学;2010年
5 张维平;基于生物反馈的放松技能训练系统的研究[D];燕山大学;2006年
6 李玉霞;放松训练对抑郁症患者心算的皮电、心率及心率变异性的影响[D];河北师范大学;2006年
7 周洁;语音信号中情感信息的分析和处理研究[D];东南大学;2005年
,本文编号:2468568
本文链接:https://www.wllwen.com/yixuelunwen/swyx/2468568.html