乳酸调控“骨—软骨”组织成分细胞的效应及其机制研究
[Abstract]:Bone and cartilage damage is a common system disorder, tissue engineering techniques to construct artificial bone and cartilage, and regenerative medicine to promote bone and cartilage regeneration is an effective method of treatment. The lactic acid matrix material such as p-toly (lactic-co-glycolic acid) (PLGA) and poly-L-lacate acid (PLLA) is a commonly used scaffold material and drug carrier for the repair and regeneration of bone-cartilage damage. Studies have shown that the degradation products of PLGA and PLLA may affect the "bone-cartilage" tissue function, but the function of lactic acid in the "bone-cartilage" tissue is not clear. This subject will study the effect of lactic acid on chondrocytes (OA) and normal cartilage cells) and bone tissue cells (bone marrow mesenchymal stem cells, MSC). The research is divided into two parts:1 lactic acid influences the steady state of the cartilage cell, and the tissue engineering regeneration technology and the autocartilage cell transplantation technology of the biological material as the support are effective methods for treating the cartilage defect, but the two technologies have the defects that: The cartilage function is affected by the degradation of the common biological scaffold, such as PLGA and PLLA, and the in vitro culture of the chondrocytes is susceptible to the loss of the phenotype. The effect and mechanism of lactic acid on OA chondrocytes in PLGA and PLLA were studied in this experiment. The theoretical support was provided for the design of PLGA and PLLA scaffolds for cartilage regeneration in the later stage, and the normal chondrocytes cultured in vitro by lactic acid. it is suitable for lactic acid to inhibit the pathological process of the osteoarthritis cartilage cell, and the lactic acid concentration in the PLGA and the PLLA degradation liquid with different molecular weights is detected, and the degradation liquid acts on the human cartilage cell to detect the effect of the degradation liquid on the proliferation of the chondrocyte and the expression of the basic protein gene, and the lactic acid acting on the human normal and the OA cartilage cells at different concentrations and times is used for detecting the function change of the cells; The lactic acid is applied to the chondrocytes in a pulse mode and a one-time mode respectively, and the optimal action effect thereof is optimized; a gene chip is adopted to screen and the gene knock-down method, and the possible mechanism of the function of the lactic acid regulation and control cell is verified. The specific contents of the study are as follows: The first part, PLGA and PLLA degradation liquid have effect on human chondrocytes. The results were as follows:1) The different molecular weight of PLGA and PLLA degradation solution to the proliferation of chondrocytes and the expression of COL2A1 and ACAN.2) The concentration of lactic acid and the pH value in the different molecular weight of P-LGA and PLLA-degrading liquid were different, the smaller the molecular weight, the higher the lactic acid concentration, and the lower the pH value. The second part, the effect of lactic acid on the human chondrocytes. It is found that the effect of lactic acid on the human chondrocytes is time and concentration dependent, and the short-term high-concentration lactic acid can promote the expression of COL2 A1 and ACAN, and the short-term high-concentration lactic acid can also inhibit the expression of the ADAMTS5. The third part, the effect of the different modes of lactic acid on the chondrocytes. The results show that the expression of COL2A1 can be up-regulated by one-time mode of one-time action of 8-hour lactic acid only once every 8 hours in 3 days. The fourth part is the mechanism of the action of lactic acid on the chondrocytes. It was found that:1) The gene expression and the biological process of the chondrocytes after the lactic acid action were screened by the gene chip, and the difference of the regulatory genes downstream of the hypoxia-inducible factor 1A (HIF1A) was found to be significant. HIF1A was suggested to be involved in the regulation of the effect of lactic acid on the chondrocyte.2) The effect of lactic acid was found to be mainly mediated by HIF1A and not HIF2A by the method of HIF1A and its family member hypoxia inducible factor 2A (HIF2A). And the expression of the HIF1A protein regulated by lactic acid is found to be mainly due to the up-regulation of the gene expression and the non-inhibition of the protein degradation. The results show that the appropriate lactic acid action can promote the steady state of the chondrocytes by up-regulating the expression of COL2 A1 and inhibiting the expression of the ADAMTS5. The effect of the degradation product lactic acid needs to be taken into account when designing the PLGA and PLLA materials for cartilage regeneration. The mechanism of lactic acid to promote the maintenance of the phenotype was explained. The specific contents of the study are as follows: The first part, the effect of lactic acid on the phenotype of the chondrocyte. It was found that the expression of COL2A1, AAN and SOX9 decreased continuously during the passage of primary chondrocytes, and the expression of COL2A1, ACAN and SOX9 could be up-regulated by lactic acid, and the phenotype of chondrocyte was maintained. The second part, the mechanism of the lactic acid maintenance of the chondrocyte phenotype. It is found that 1) lactic acid can increase the expression of the related gene of the glycolysis of the chondrocyte.2) The phenotype of the chondrocyte is related to the glycolysis: the action of hypoxia and TGF-3 can increase the glycolysis, and the glycolysis in the course of the passage is down-regulated.3) After the glycolysis is inhibited, The function of lactic acid to regulate the phenotype of the chondrocyte decreased. The results show that lactic acid can promote the phenotype of the in vitro culture of the chondrocytes by up-regulation of glycolysis. The study of the self-renewal ability of the lactic acid to regulate the self-renewal of the bone marrow-derived mesenchymal stem cells is the main precursor of the bone tissue. A significant feature of the mesenchymal stem cells is the ability to self-update, and the study shows that cell metabolism can regulate the self-renewal capacity of stem cells through different metabolic intermediates. The lactic acid is the degradation product of PLGA and PLLA, and it is the main end product of the anaerobic glycolysis of the cell. The regulation of the self-renewal ability of the stem cells is not clear. In this experiment, the role of lactic acid on the self-renewal ability of the cells was studied, and the mechanism of the self-renewal capacity of the lactic acid-regulating stem cells was discussed from the viewpoint of the control of the glycolysis of the KDM6B, so as to increase the new recognition of the function of the lactic acid to regulate the stem cells. The specific content of the study is as follows: The first part, the effect of lactic acid on the proliferation and self-renewal capacity of hMSCs. 1) The lactic acid inhibits the proliferation of hMSCs.2) The low concentration of lactic acid promotes the self-renewal capacity of hMSCs.3) The lactic acid promotes the expression of hMSCs. The second part, the mechanism of the self-renewal capacity of the MSC (the regulation of the glycolysis of the lactic acid). it is found that 1) lactic acid can increase the glycolysis of hMSCs.2) The regulation of glycolysis can affect the self-renewal ability of hMSCs: up-regulation of glycolysis can promote the self-renewal capacity of hMSCs, and the down-regulation of glycolysis can inhibit the self-renewal capacity of hMSCs.3) After the glycolysis is inhibited, The self-renewal ability of the hMSCs was decreased by lactic acid. The third part, the control mechanism of the lactic acid to glycolysis (the regulation of the lactic acid to the KDM6B). It is found that 1) lactic acid can increase the expression of KDM6B.2) KDM6B regulates the glycolysis and self-renewal capacity of the 1MSC: the KDM6B knock-down can reduce the glycolysis of hMSCs, and the KDM6B knock-down can inhibit the self-renewal capacity of hMSCs.3) After the KDM6B is knocked down, the self-renewal ability of the hMSCs is reduced. The results show that lactic acid can regulate the self-renewal capacity of hMSC through the glycolysis mediated by KDM6B.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R68;R318.08
【相似文献】
相关期刊论文 前10条
1 何清义,李起鸿,许建中,杨柳;转化软骨细胞与正常软骨细胞的生物特性比较[J];中国临床康复;2002年10期
2 王小虎;卫小春;陈维毅;;软骨细胞力学特性的研究进展[J];中华医学杂志;2006年21期
3 沈雁,唐毅,李斯明,钟灿灿,梁佩红;碱性成纤维细胞生长因子与透明质酸对培养兔软骨细胞的作用[J];中华创伤杂志;2000年06期
4 林建华,吴朝阳,许卫红;不同培养时间软骨细胞的生物学特性[J];福建医科大学学报;2000年02期
5 张文涛,卢世璧,黄英,李楠;软骨细胞形态对其缝隙连接的影响[J];中国创伤骨科杂志;2000年04期
6 杨物鹏,许建中;软骨细胞培养及其调控[J];中国矫形外科杂志;2000年08期
7 杨彩荣;软骨细胞培养及其调控因素研究进展[J];国外医学.耳鼻咽喉科学分册;2002年03期
8 张文涛,卢世璧,黄英,李楠;软骨细胞形态、表型与胞间通讯研究[J];中国修复重建外科杂志;2002年05期
9 杨运东 ,陈基长;不同施加因素对软骨细胞的影响[J];中医正骨;2002年09期
10 张艳,柴岗,崔磊,刘伟,曹谊林;不同类型人软骨细胞体外生物学特性比较[J];中华实验外科杂志;2003年06期
相关会议论文 前10条
1 张春雷;孙美乐;姚洪菊;;抗氧化剂和透明质酸对软骨细胞的保护作用[A];中国细胞生物学学会第五次会议论文摘要汇编[C];1992年
2 任宏造;;软骨细胞的超生结构病理[A];第六次全国电子显微学会议论文摘要集[C];1990年
3 张杨;崔丽;郭悦;孙晓雷;李秀兰;;滑膜细胞微环境对软骨细胞生物学活性的影响[A];第十八届全国中西医结合骨伤科学术研讨会论文汇编[C];2011年
4 柏涛;;骨髓间充质干细胞诱导表达软骨细胞表型的研究进展[A];玉溪市第三届二次骨科学术研讨会论文汇编[C];2009年
5 周红辉;万福生;;人骨髓间充质干细胞分化为软骨细胞的实验研究[A];华东六省一市生物化学与分子生物学学会2006年学术交流会论文集[C];2006年
6 王正辉;吴宝俊;许珉;;壳聚糖/明胶复合不同软骨细胞体外构建组织工程软骨的实验研究[A];全国耳鼻咽喉头颈外科中青年学术会议论文汇编[C];2012年
7 马剑雄;马信龙;张华锋;张园;王志钢;杨阳;;生物力学因素在激素性股骨头坏死中对软骨细胞的作用[A];2009第十七届全国中西医结合骨伤科学术研讨会论文汇编[C];2009年
8 李建华;黄建荣;康奕飞;许继德;涂永生;;体外诱导人骨髓间充质干细胞分化为软骨细胞的研究[A];中南地区第六届生理学学术会议论文摘要汇编[C];2004年
9 石印玉;曹月龙;冯伟;郑昱新;石瑛;王翔;;补肾、柔肝中药对软骨细胞生物功能的影响[A];2004'中华中医药科技成果专辑[C];2004年
10 许道荣;金丹;肖庭辉;余斌;;长时间拉伸应变对软骨细胞生化环境的影响[A];第20届中国康协肢残康复学术年会论文选集[C];2011年
相关重要报纸文章 前10条
1 聂翠蓉;英科学家从成人骨骼中找到软骨干细胞[N];科技日报;2008年
2 吴一福;西安交大:用人胎儿软骨细胞培养成功软骨组织工程种子细胞[N];中国医药报;2006年
3 中文;人体软骨举足轻重[N];广东科技报;2000年
4 刘霞;英用患者组织细胞成功培育出再生软骨[N];科技日报;2010年
5 保健时报特约记者 方序;体外“养”一块软骨补膝盖[N];保健时报;2011年
6 记者 张可喜;培养软骨细胞[N];新华每日电讯;2002年
7 健康时报记者 李海清;软骨破了打“补丁”[N];健康时报;2009年
8 杨春;药物增高不可信[N];大众卫生报;2005年
9 黄枫 谢国平;中医药治疗膝骨关节炎实验研究进展[N];中国中医药报;2006年
10 记者 何屹;英国用干细胞成功培育出软骨组织[N];科技日报;2005年
相关博士学位论文 前10条
1 王晓凤;自噬在软骨发育不全与软骨生成中的作用与机制研究[D];第三军医大学;2015年
2 王胜楠;杜仲苷对IL-1β诱导的软骨细胞分解代谢和凋亡的影响及其作用机制[D];南方医科大学;2015年
3 张元民;MiR-145在原发性膝关节骨性关节炎软骨中的表达及其意义[D];天津医科大学;2015年
4 张龙强;整合素β1促进GIT1表达而影响软骨细胞增殖凋亡的研究[D];山东大学;2015年
5 马中希;周期性张应力对大鼠生长板软骨细胞的增殖和凋亡作用[D];华中科技大学;2015年
6 刘艳;BMP-2在骨性关节炎中表达的意义及其诱导凋亡及增殖的研究[D];吉林大学;2016年
7 甄允方;软骨干细胞来源的微囊泡对骨髓间充质干细胞分化、增殖的作用及机理的研究[D];苏州大学;2016年
8 鄢博;mTORC1通路调节PTHrP来调控软骨生长、增殖、分化[D];南方医科大学;2016年
9 张国梁;miRNA-502-5p对骨关节炎软骨细胞损伤的生物学作用及机制研究[D];南方医科大学;2016年
10 薛恩兴;地塞米松激活自噬对软骨细胞衰老影响的研究[D];南方医科大学;2016年
相关硕士学位论文 前10条
1 张君;3.0T磁共振对膝关节移植软骨的形态学评估及T2mapping分层定量评价[D];中国人民解放军医学院;2015年
2 李亮;骨形成蛋白-7促进多孔钽—软骨细胞分泌功能及基因表达的实验研究[D];河北联合大学;2014年
3 简晓蕾;甲状旁腺激素(1-34)对豚鼠自发性OA模型作用的体内体外实验研究[D];河北联合大学;2014年
4 赵阳;碱性成纤维细胞生长因子(bFGF)对多孔钽—软骨细胞复合物细胞增殖及分化影响的实验研究[D];河北联合大学;2014年
5 赵宏坤;精氨酸—甘氨酸—天冬氨酸(RGD)多肽修饰多孔钽材料对软骨细胞粘附性影响的实验研究[D];河北联合大学;2014年
6 魏丽杰;降钙素对IL-1β诱导的大鼠软骨细胞炎性反应的影响[D];河北联合大学;2014年
7 张岭;国产多孔钽对大鼠软骨细胞生物学行为及功能变化的体外研究[D];河北联合大学;2014年
8 史东;uPA-siRNA重组慢病毒载体感染兔软骨细胞对其增殖情况初步研究[D];石河子大学;2015年
9 王林林;体外兔软骨细胞的分离,培养与鉴定的研究[D];新乡医学院;2015年
10 秦洋洋;IGF1R基因沉默对梅花鹿鹿茸软骨细胞增殖周期凋亡等作用研究[D];华中农业大学;2015年
,本文编号:2477651
本文链接:https://www.wllwen.com/yixuelunwen/swyx/2477651.html