颈椎牵引的生物力学研究及其牵引设备的研制
本文关键词: 颈椎 有限元分析 生物力学 颈椎牵引 出处:《河南科技大学》2017年硕士论文 论文类型:学位论文
【摘要】:颈椎牵引是临床治疗和缓解颈椎病的有效方式之一,在常用牵引力范围之内,牵引角度对治疗有明显的效果。由于颈椎的在体力学实验实现起来比较艰难,加之计算机仿真技术的快速发展,利用医学图像的三维建模技术和有限元计算对颈椎牵引进行生物力学的研究获得人们的普遍青睐。由于颈椎骨骼形状的不规则性以及其肌肉韧带结构的复杂性,使得人们对于颈部的完整骨-肌系统建模比较困难,大量的有限元分析研究都是集中在颈椎椎体、椎间盘和韧带上,而对于考虑颈部肌肉力对颈椎牵引影响的有限元研究就更少。本文在正常人颈椎的CT断层扫描图像基础上,利用医学图像处理软件Simpleware获取其整体轮廓范围,通过阈值分析、区域增长、递归高斯过滤等步骤,建立一个包括椎体、椎间盘、关节软骨、前纵和后纵韧带、黄韧带、棘间韧带和棘上韧带的Cl-C7全颈椎三维模型,并将其导入逆向工程软件Geomagic Studio2013中,对模型进行去噪、孔填充、边界修复等处理,并与Any Body中导出的颈椎椎体进行全局注册和手动注册,完成位置匹配,利用Simpleware中的有限元分析模块,对匹配好的颈椎模型进行材质属性的赋值和有限元网格的划分,最终创建C1-C7全颈椎有限元模型。观察颈椎牵引不同重量、不同牵引角度时颈部肌肉表面肌电信号的变化特点,并与Any Body中颈椎建模仿真所得的相关肌肉力活性的变化特点作对比,验证仿真结果的合理性。并利用Any Body仿真颈椎后伸不同角度牵引所输出的关节力和肌肉力对模型进行有限元分析,得到颈椎各椎体上的位移及应力分布情况,并对比分析颈椎各椎体、椎间盘、钩椎关节在有无肌肉力作用下的力学特点。通过对颈椎牵引的生物力学研究,得出了颈部肌肉在牵引过程中的兴奋程度和疲劳时间,并确定了牵引初期相对安全的牵引角度。最后,结合颈椎牵引实验所得的颈部肌肉表面肌电信号的变化特点和生物力学特点,对颈椎牵引设备进行结构和控制系统的设计,牵引力的施加由原来的固定砝码持续牵引改为伺服电机控制实现持续、间歇式牵引,并增加了拉力传感器信号处理与显示模块,能够实时监测牵引力的大小,从而反馈给伺服电机控制模块随时调整牵引力的大小,以更好地满足临床对牵引治疗的多方面要求,使得治疗效果更显著。
[Abstract]:Cervical traction is one of the effective ways to treat and relieve cervical spondylosis. Traction angle has obvious effect on the treatment within the range of common traction. Coupled with the rapid development of computer simulation technology. Biomechanical research on cervical vertebrae traction based on 3D modeling of medical images and finite element calculation has been widely appreciated because of the irregularity of bone shape of cervical vertebrae and the complexity of the structure of muscle and ligaments of cervical vertebrae. It is difficult to model the whole bone-muscle system of the neck. A lot of finite element analysis is focused on the cervical vertebra, intervertebral disc and ligaments. However, there are few finite element studies considering the effect of cervical muscle force on cervical traction. This paper is based on CT tomography images of normal cervical vertebrae. Using the medical image processing software Simpleware to obtain the whole contour range, through threshold analysis, regional growth, recursive Gao Si filtering and other steps, establish a vertebral body, intervertebral disc, articular cartilage. Three-dimensional Cl-C7 models of anterior longitudinal and posterior longitudinal ligaments, ligaments flavum, interspinous ligaments and supraspinal ligaments were introduced into reverse engineering software Geomagic Studio2013. The model was treated with denoising, hole filling and boundary restoration. The model was registered globally and manually with the cervical vertebrae derived from Any Body, and the position matching was completed. Using the finite element analysis module in Simpleware, the matched cervical vertebra model is assigned the material attribute and the finite element mesh is divided. Finally, the finite element model of C1-C7 whole cervical spine was established. The changes of EMG on the cervical muscle surface were observed with different cervical traction weights and different traction angles. And compared with the changes of muscle force activity obtained by modeling and simulation of cervical vertebrae in Any Body. To verify the rationality of the simulation results, and use Any Body to simulate the joint force and muscle force output from different angles of cervical extension traction to the finite element analysis of the model. The displacement and stress distribution on the cervical vertebrae were obtained, and the mechanical characteristics of the cervical vertebrae, intervertebral disc and hook joint under the action of muscle force or not were compared and analyzed. The biomechanical study of cervical traction was carried out. The exciting degree and fatigue time of neck muscles during traction are obtained, and the relatively safe traction angle at the beginning of traction is determined. Finally. According to the characteristics of electromyography and biomechanics of cervical muscle surface, the structure and control system of cervical traction equipment are designed. Traction applied from the original fixed weight continuous traction instead of servo motor control to achieve continuous, intermittent traction, and increased the pull sensor signal processing and display module, can real-time monitoring the size of traction. So the servo motor control module can adjust the size of traction force at any time to better meet the needs of clinical traction treatment and make the therapeutic effect more remarkable.
【学位授予单位】:河南科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R681.55;R318.01
【参考文献】
相关期刊论文 前10条
1 胡晓晖;洪翔;何冰凡;Fritz-Uwe Niethard;颜文涛;张健;;基于Simpleware全颈椎三维有限元模型的构建与分析[J];医用生物力学;2014年06期
2 汪芳俊;魏威;廖胜辉;任宏宇;范炳华;;前屈位不同角度牵引治疗颈椎病的有限元分析[J];中国骨伤;2014年07期
3 张鄂;毕朝瑞;张俊峰;张帆;;驾驶振动所致局部肌肉疲劳的肌电信号分析[J];四川兵工学报;2012年12期
4 茆军兵;贾晓红;王人成;蒲放;孙芳;;头部前屈运动过程中颈肌特性的研究[J];医用生物力学;2012年05期
5 魏威;廖胜辉;赖震;费骏;;生理曲度变直与正常的颈椎有限元建模与分析[J];中国生物医学工程学报;2011年06期
6 管恩福;陈云华;;走出颈椎病的误区[J];环球中医药;2011年04期
7 成海平;李交杰;季思菊;王致洁;刘宝善;;空军飞行员颈肌强度的研究[J];医用生物力学;2011年01期
8 高能;王维佳;;有限元法在颈椎病牵引治疗研究中的应用[J];中国组织工程研究与临床康复;2011年04期
9 魏威;毕大卫;郑琦;祖罡;;颈椎有限元分析模型的应用和进展[J];中国骨伤;2010年05期
10 张芳;刘怀霞;卢君艳;陶涛涛;程博;蒋松鹤;;颈部不同姿势侧卧位时颈肌表面肌电信号分析及其意义[J];中华物理医学与康复杂志;2010年05期
相关博士学位论文 前2条
1 梁伟明;重力肌群锻炼对脊柱疼痛和功能康复影响的临床研究[D];南方医科大学;2014年
2 赵忠民;颈型颈椎病的症状与软组织的变化研究[D];中国中医科学院;2011年
相关硕士学位论文 前3条
1 陈科;新型颈椎牵引复位器治疗下颈椎骨折脱位的理论依据及临床初步应用[D];南方医科大学;2012年
2 吴增志;牵引对退变颈椎生物力学影响的有限元分析[D];汕头大学;2011年
3 宿艳彩;基于ANSYS软件的桥架结构参数化有限元分析[D];西南交通大学;2006年
,本文编号:1490545
本文链接:https://www.wllwen.com/yixuelunwen/waikelunwen/1490545.html