当前位置:主页 > 医学论文 > 外科论文 >

股骨颈骨折骨缺损的影像学及生物力学研究

发布时间:2018-05-16 13:21

  本文选题:股骨颈骨折 + 骨缺损 ; 参考:《武汉大学》2015年博士论文


【摘要】:股骨颈骨折是临床常见损伤,全球每年有超过100万起股骨颈骨折。骨折的分型对于诊断、治疗方法的选择、预后的判断以及病例总结分型具有重要的意义。目前常用的股骨颈骨折分型方法有Garden分型、AO分型、Pauwel分型、解剖分型等。不同的分型各有其思路,并能在一定程度上指导临床。但这些分型都是基于X片的分型,而实际上骨折可表现为嵌插、内外翻、内外旋、移位等多种形态,二维的X片并不能准确描述其复杂性,基于X片的分型具有一定局限性也在所难免。已有较多学者认识到了三维CT影像对于股骨颈骨折诊断治疗的重要性,认为它能更好的反映骨折形态、指导治疗,并可能判断预后。因此,我们基于CT影像对股骨颈骨折进行,并在后继的工作中判断及价值。在对股骨颈骨折CT影像分析的过程中,我们对股骨颈骨折后并发的骨缺损产生兴趣。解剖复位对于治疗股骨颈骨折的重要性毋庸置疑。复位的标准如Garden指数主要考虑的是骨折的对线,对于骨折端的嵌插并无要求。可是,对于复位后Garden指数良好,却存在骨折端嵌插、股骨颈短缩的骨折可以被称为解剖复位吗?此类骨折应是合并骨量丢失,即骨缺损。因此我们借助CT影像,对股骨颈骨折骨缺损的发生进行了评估。评估结束后,我们使用尸体骨,制作了股骨颈骨缺损的模型,并采用采用电阻应变片测量的方法,对各类缺损进行了生物力学性能的测试,从而评价各类骨缺损对股骨近段的生物力学性能的影响。。第一部分150例股骨颈骨折CT影像分析目的:在追求严格的解剖复位前提下,通过CT影像对股骨颈骨折骨缺损的情况进行评估。方法:对我院股骨颈骨折行X线检查及螺旋CT扫描,剔除陈旧性骨折、病理性骨折以及合并同侧髋臼骨折病例,最后获得150例合格样本。所有病例均有扫描厚度为1mm的螺旋CT及三维重建影像。借助CT影像对股骨颈骨折进行分类,提出“潜在骨缺损”及“真性骨缺损”的概念,并对各类骨缺损的发生部位进行统计。依据CT影像,严格按照Graden分型标准,对本组资料进行分型,并统计各型例数。将以下6种情况认为是存在“潜在骨缺损”:1.股骨颈头下型骨折,颈嵌插入外翻的股骨头内,或追求解剖复位,在纠正外翻的股骨头时,股骨颈的上方发生骨缺损;2.骨折原位嵌插,近端皮质骨嵌入远端松质骨内,复位后存在股骨颈内骨缺损:3.骨折近端内收移位,无旋转,骨折端相互嵌插,股骨颈下方骨量丢失,复位后存在内下方的骨缺损;4.骨折内翻外旋移位,骨折远端嵌入近端后侧,复位后存在股骨颈后侧骨缺损;5.骨折内翻外旋移位,骨折远端嵌入近端后侧,复位后存在股骨颈后侧骨缺损,骨折嵌插程度较重;6.股骨颈基底部骨折剪切移位,复位后存在股骨颈内下方骨缺损。借助CT影像,对“真性骨缺损”骨折碎片发生部位进行分类,将骨折碎片分为“颈前“‘颈内下”“颈后”“颈外上”“粉碎性骨折”。结果:股骨颈骨折CT影像可用于骨缺损的量化评估,具有临床意义。股骨颈骨折后骨缺损比例较高。存在“潜在骨缺损"99例,占总例数66.00%,其中36.36%的病例骨缺损情况比较严重。缺损部位以颈后方缺损最为多见(48例,48.5%)存在“真性骨缺损"26例,占17.33%,缺损部位同样以颈后方缺损最为多见(12例,8.00%)结论:螺旋CT影像可以直观、立体的反映骨折、骨缺损形态。股骨颈骨折“潜在骨缺损”发生率较高。第二部分不同类型股骨颈骨缺损对股骨近段的生物力学性能的影响目的:评估几种股骨颈“真性骨缺损”对股骨近段生物力学性能的影响。方法:随机选择12个青壮年尸体的防腐股骨标本,X射线摄片及肉眼选择排除骨折、肿瘤、结核及先天畸形,去除肌肉、软组织、关节囊、韧带,将标本随机分为3组并编号。测试点选择:①号测试点:大转子。②号测试点:股骨颈后方。③号测试点:后侧股骨头。④号测试点:股骨头-颈交界处⑤号测试点:前侧股骨头。⑥号测试点:小转子。⑦号测试点:股骨头正上方,稍偏外侧;⑧号测试点:股骨颈内侧。同一组4个股骨,在粘贴电阻应力片后,测试各应力片的应变值。同样方法测量3次,并记录其均值。然后将该组股骨制造骨缺损模型,按照同种方法继续测试3次,记录均值,并对比缺损前后的实验结果。股骨颈真性骨缺损模型制造方法:股骨颈内侧骨缺损模型:沿股骨颈长轴,以股骨颈基底部为起始,在颈内侧制造长2CM,宽1CM的矩形骨缺损。股骨颈上方骨缺损模型:沿股骨颈长轴,以股骨颈基底部为起始,在颈上方制造长2CM,宽1 CM的矩形骨缺损。股骨颈后方骨缺损模型:沿股骨颈长轴,在颈后方偏上方,制造长2CM,宽1CM的矩形骨缺损结果:股骨颈内侧骨缺损:600N情况下,①~⑦号测试点应变值分别增大了25.78%,21.52%,7.30%,29.96%,-18.16%,8.90%,19.34%,以④号测试点最大。股骨头处应力改变以⑦号测试点(股骨头正上方)最大(19.34%)。1200N情况下,①~⑦号测试点应变值分别增大了24.01%,54.3%,12.83%,29.68%,-16.01%,15.78%,31.33%,以②号测试点最大。股骨头处应力改变以⑦号(股骨头正上方)最大。股骨颈内侧骨缺损:股骨颈外上方缺损,600N(单倍体重)情况下,1-8号测试点应变值分别增大了34.30%,61.69%,-9.01%,5.82%,10.23%,-18.94%,-4.13%,-10.39%。1200N情况下,①~⑧号测试点应变值分别增大了31.67%,122.41%,-7.63%,1.51%,14.20%,-12.14%,13.02%,13.63%,以②号测试点(股骨颈后方)变化最大。股骨颈后侧缺损:600N情况下,1-8号测试点(无②号)应变值分别增大了30.76%,15.79%,24.87%,45.19%,58.85%,37.84%,48.60%,以⑥号测试点(小转子)最大。股骨头处应力改变以⑤号(前侧股骨头)最大(45.19%)。在1200N(双倍体重)∞号测试点(无②号)应变值分别增大了61.07%,10.16%,25.42%,0.20%,34.64%,50.74%,48.29%,以①号测试点(大转子)最大。股骨头处应力改变以⑦号(股骨头正上方)最大结论:各类股骨颈骨折骨缺损后,均对股骨颈近段生物力学性能造成改变。在双倍体重下,颈后方骨缺损对股骨头正上方应力值影响最大,颈内侧骨缺损对股骨头正上方应力值影响较大,而颈外上方骨缺损对股骨头应力值影响较小。比较各类股缺损,股骨颈后方骨缺损对股骨头上方(最常见头坏死区域)应变值影响最大
[Abstract]:Femoral neck fracture is a common clinical injury. There are more than 1 million femoral neck fractures in the world every year. Fracture classification is of great significance for diagnosis, treatment, prognosis and case summary. The common methods of femoral neck fracture classification are Garden, AO, Pauwel, anatomic, and so on. Each type has its own ideas and can guide the clinic to a certain extent. But these types are based on the classification of X slices, but in fact, the fracture can be manifested as intercalation, internal and external, internal and external rotation, displacement and so on. The two-dimensional X film can not accurately describe its complexity, and the classification based on X film is unavoidable. We recognize the importance of three-dimensional CT imaging for the diagnosis and treatment of femoral neck fractures, think it can better reflect fracture morphology, guide the treatment, and may judge the prognosis. Therefore, we based on the CT image of the femoral neck fracture, and judge and value in the subsequent work. In the process of CT image analysis of the femoral neck fracture, we are right The importance of anatomic reduction for the treatment of femoral neck fractures is unquestionable. The standard of reduction, such as the Garden index, is mainly considering the line of fracture and the insertion of the fracture end. However, for the good Garden index after reduction, there is an intercalated fracture end and a short necked neck of the femur. Can fracture be called anatomic reduction? This type of fracture should be combined with bone loss, or bone defect. Therefore, we have assessed the occurrence of bone defects in the femoral neck fracture with the help of CT images. After the evaluation, we used a cadaver bone to make a model of the bone defect of the femoral neck and used a method of resistance strain gauges to measure all kinds of defects. A test of biomechanical properties was carried out to evaluate the effect of bone defects on the biomechanical properties of the proximal femur. Part one: analysis of the CT image of 150 cases of femoral neck fracture in part 1: To evaluate the condition of the bone defect of the femoral neck fracture by CT image under the premise of strict anatomical reduction. X-ray examination and spiral CT scan of cervical fracture were performed to eliminate old fractures, pathological fractures and cases of ipsilateral acetabular fractures. Finally, 150 qualified samples were obtained. All cases had spiral CT and 3D reconstruction images with a scanning thickness of 1mm. The femoral neck fracture was classified by CT image, and "potential bone defect" and "true" were proposed. The concept of bone defect and the location of all kinds of bone defects were statistically analyzed. According to the CT image, the data were classified strictly according to the Graden classification standard, and the number of cases were counted. The following 6 cases were considered to be "potential bone defect": 1. femoral neck subhead fracture, inlay insertion of the femoral head, or the pursuit of solution. The bone defect occurred above the neck of the femur when the femoral head was corrected by cesarean section. 2. the fracture was inserted in situ, the proximal cortical bone was embedded in the distal cancellous bone, and the femoral neck bone defect was found after reduction: 3. the proximal end of the fracture was displaced, no rotation, intercalation of the fracture end phase, the loss of bone mass below the femoral neck, and the bone deficiency after reduction. 4. fracture entropion translocation, the distal end of the fracture was embedded in the posterior side of the proximal end, and the posterior lateral bone defect of the femur neck was found. 5. the external rotation of the fracture of the femoral neck was shifted, the distal end of the fracture was embedded in the posterior side of the proximal end. The posterior lateral bone defect of the femoral neck was repositioned, the fracture was heavily intercaled; 6. the fracture of the base of the neck of the femur was displaced, and the internal femoral neck was present after reduction. A CT image is used to classify the site of "true bone defect" fracture fragments. The fracture fragments are divided into "anterior cervical" "neck" "neck" "neck" "neck" "comminuted fracture". Results: the CT image of femoral neck fracture can be used for quantitative evaluation of bone defect. It is of clinical significance. Bone deficiency after femoral neck fracture The loss ratio was high. There were 99 cases of "potential bone defect", accounting for 66% of the total cases, of which 36.36% of the cases had serious bone defects. The most common defects in the posterior neck defect (48 cases, 48.5%) were true bone defects in 26 cases, 17.33%, and the most common defects in the rear of the neck (12 cases, 8%) conclusion: spiral CT image can be found. Visual and stereoscopic reflection of fracture and shape of bone defect. The incidence of "potential bone defect" in the femoral neck fracture is higher. Second different types of femoral neck bone defects on the biomechanical properties of the proximal femur. Objective: To evaluate the effect of several femoral neck "genuine bone defects" on the biomechanical properties of the proximal femur. Selection of 12 cadaver specimens, X ray photography and the naked eye selection to exclude fracture, tumor, tuberculosis and congenital malformation, remove muscle, soft tissue, joint capsule, ligament. The specimens were randomly divided into 3 groups and numbered. Test point selection: (1) test point: the rear of the neck of the femur. Bone. Test point: the test point of the femoral head and neck junction: anterior femoral head. 6 test point: small rotor. Test point of the femoral head: the femoral head above, slightly lateral; the test point of the femoral neck: the inside of the neck of the femur. The same group of 4 femurs, after sticking the resistance stress sheet, test the strain values of each stress sheet. The same method measured 3 times, And then the bone defect model of the femur was recorded and then tested 3 times according to the same method, recorded the mean value, and compared the experimental results before and after the defect. The model of the bone defect model of the femoral neck: the model of the medial bone defect of the neck of the femur: along the long axis of the femur neck, the base of the femoral neck was started, and the long 2CM was made inside the neck of the neck. A rectangular bone defect of a wide 1CM. A model of bone defect above the neck of the femur: a rectangular bone defect with long 2CM and 1 CM width above the neck of the femur along the long neck of the femur. The posterior femoral neck bone defect model: the long axis of the femur neck, above the posterior neck of the neck, the result of the long 2CM, wide 1CM bone defect: the medial bone of the femur neck Defect: in the case of 600N, the strain values of the test points were increased by 25.78%, 21.52%, 7.30%, 29.96%, 29.96%, 29.96%, 8.90%, 19.34%, and the maximum of the test point of the number 4. The strain of the femoral head was changed at the maximum (19.34%).1200N of the test point of the femoral head (the top of the femoral head), and the strain values of the test points were increased by 24.01%, 54.3%, 12.83%, 2, respectively. 9.68%, -16.01%, 15.78%, 31.33%, the largest test point of number 2. The stress change at the femoral head is the largest. The femoral neck medial bone defect: the femoral neck defect, 600N (double weight), the 1-8 test point strain value increased 34.30%, 61.69%, -9.01%, 5.82%, 10.23%, -18.94%, -4.13%, -10.39%.1200N situation, respectively. The strain values of test points were increased by 31.67%, 122.41%, -7.63%, 1.51%, 14.20%, 14.20%, 14.20%, 13.02%, 13.63%, respectively. The posterior lateral femoral neck defect: the femoral neck posterior side defect: 600N, the 1-8 test point (no number) strain value increased 30.76%, 15.79%, 24.87%, 45.19%, 58.85%, 37.84%, 48.60%, respectively. The maximum of the test point (small rotors). The maximum stress change at the femoral head (the anterior side of the femoral head) was maximum (45.19%). The strain values of the 1200N (double weight) infinity test point (no number 2) increased by 61.07%, 10.16%, 25.42%, 0.20%, 34.64%, 50.74%, 48.29%, and the maximum of the test point (big rotors). Maximum conclusion: the biomechanical properties of the proximal femoral neck were changed after the bone defect of various femoral neck fractures. Under double weight, the posterior cervical bone defect had the greatest influence on the stress value of the femoral head, and the internal jugular bone defect had a great influence on the stress value of the femoral head, and the stress value of the femoral head above the neck of the neck was the value of the femoral head stress value. Compared with all kinds of femoral defects, the defect in the posterior part of the femoral neck has the greatest influence on the strain value above the femoral head (the most common head necrosis area).

【学位授予单位】:武汉大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:R687.3

【相似文献】

相关期刊论文 前10条

1 梁再卿,黎忠文;肢体骨缺损合并皮肤缺损的显微外科修复[J];中华显微外科杂志;2001年02期

2 张景僚,韩汉平,时冠军,赵爱萍,王芳;带肌蒂腓骨移位治疗胫骨骨缺损10例[J];前卫医药杂志;2001年06期

3 郭德亮,潘朝晖,张伟旭;吻合血管腓骨移植重建全跟骨缺损一例[J];中华显微外科杂志;2002年03期

4 郭德亮,潘朝晖,张伟旭;吻合血管腓骨移植重建全跟骨缺损一例[J];中华创伤骨科杂志;2002年01期

5 吴佳奇,张晓刚,王清;骨缺损的基因治疗[J];泸州医学院学报;2004年03期

6 王学华,张新正;胫骨骨缺损致腓骨承重14年1例报告[J];中国矫形外科杂志;2004年11期

7 姜保国;;骨缺损的治疗进展[J];继续医学教育;2006年12期

8 赵基栋;钱寒光;苗宗宁;祝建中;彭玮;;纳米晶羟基磷灰石胶原复合骨髓间充质干细胞修复骨缺损(英文)[J];中国组织工程研究与临床康复;2010年42期

9 贾正中;刘沂;丁占云;高波;崔甲荣;;长骨缺损的治疗[J];骨与关节损伤杂志;1987年01期

10 钟贾纯,,卓小为,张衡敏,代维立,王兰,陈振宇;吻合血管的髂骨移植修复骨缺损骨不连[J];中国修复重建外科杂志;1994年03期

相关会议论文 前10条

1 吴佳奇;张晓刚;;骨缺损的基因治疗[A];第11届全国中西医结合骨伤科学术研讨会论文汇编[C];2003年

2 唐辉;徐永清;马涛;周田华;张秀琼;林月秋;汤迅;丁晶;李军;;耐药金黄色葡萄球菌注射总量对兔感染性骨缺损形成的影响[A];第六届西部骨科论坛暨贵州省骨科年会论文汇编[C];2010年

3 杨志;覃育接;谭桢;;神经生长因子对大鼠骨缺损愈合影响的研究[A];第十八届全国中西医结合骨伤科学术研讨会论文汇编[C];2011年

4 梁高峰;;游离腓骨骨瓣在上肢骨缺损中的应用[A];中华医学会第10届全国显微外科学术会议暨世界首例断肢再植成功50周年庆典论文集[C];2013年

5 高堪达;王秋根;黄建华;陶杰;李豪青;高伟;李凡;吴小峰;;骨搬运技术在下肢创伤后感染性骨缺损治疗中的应用[A];第七届全国创伤学术会议暨2009海峡两岸创伤医学论坛论文汇编[C];2009年

6 马宝通;;四肢创伤性骨缺损的治疗[A];第十三届全国中西医结合骨伤科学术研讨会论文集[C];2005年

7 吴其常;苗旭漫;张志刚;卞传华;;下肢创伤性骨缺损的治疗[A];第16届全国脊柱&四肢矫形外科(骨科)康复学术研讨会暨学习班论文汇编[C];2007年

8 任凯晶;李小辉;宋立明;毕晓扬;高志国;;植骨技术在初次全膝关节置换术骨缺损中的应用[A];第十八届全国中西医结合骨伤科学术研讨会论文汇编[C];2011年

9 卢开柏;许永华;杨谦;陈新谦;马在松;;实验性骨折骨不连和骨缺损治疗的病理学研究[A];第六届全国生物医学体视学学术会议暨第九届全军军事病理学学术会议、第五届全军定量病理学学术会议论文汇编[C];2005年

10 谢秉局;;骨搬运技术治疗下肢大段骨缺损[A];2012年浙江省骨科学术年会论文集[C];2012年

相关重要报纸文章 前8条

1 冯琳;骨不连与骨缺损研究获奖[N];中国医药报;2002年

2 冯琳;骨不连与骨缺损研究获军队医疗成果二等奖[N];中国高新技术产业导报;2001年

3 王根华;用自体骨修复超长骨缺损[N];健康报;2002年

4 周乙雄;打压植骨解决骨缺损[N];健康报;2005年

5 京华;超长骨缺损自体修复术首获成功[N];中国医药报;2002年

6 于洋 张兆军;骨修复新技术可提高骨缺损愈合能力和质量[N];科技日报;2011年

7 记者 白毅;智能生物材料可修复骨缺损[N];中国医药报;2011年

8 白毅陈;祖亮;新技术有望修复老年性骨缺损[N];中国医药报;2005年

相关博士学位论文 前2条

1 钱炜;股骨颈骨折骨缺损的影像学及生物力学研究[D];武汉大学;2015年

2 蓝霞;Ilizarov牵张技术在肢体和骨段延长中的应用研究[D];中国人民解放军医学院;2013年

相关硕士学位论文 前10条

1 万值颖;Ilizarov技术治疗胫骨感染性骨不连及骨缺损的临床研究[D];昆明医科大学;2015年

2 郑充;骨水泥螺丝钉技术在初次TKA中重建胫骨骨缺损的临床及有限元研究[D];中国人民解放军医学院;2016年

3 李聪杰;应用钛网修复髋臼大面积骨缺损的生物力学研究[D];河北医科大学;2012年

4 邱明宪;中药巴布剂“跌创膏”对家兔骨缺损愈合的实验研究[D];辽宁医学院;2014年

5 孙树茂;骨搬运术治疗胫骨感染性大段骨缺损[D];山东大学;2013年

6 刘彦;全髋关节翻修中骨缺损的处理及其疗效分析[D];暨南大学;2013年

7 胡忠洲;自体混合植骨治疗初次全膝关节置换术中Randc型骨缺损[D];山东大学;2012年

8 陈松;应用llizarov技术治疗胫骨骨缺损及感染性骨不连的临床研究[D];河北医科大学;2014年

9 任翔;定制型膝关节假体修复股骨远端骨缺损的三维有限元分析[D];四川大学;2007年

10 赵聪;骨形成蛋白-2质粒体内转染治疗牙周骨缺损的实验研究[D];重庆医科大学;2013年



本文编号:1896963

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/waikelunwen/1896963.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户262a8***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com