一项对466个中国汉族健康成人的回顾性分析:年龄对股骨近端几何形态的影响
本文选题:年龄 + 股骨近端参数 ; 参考:《南方医科大学》2016年硕士论文
【摘要】:研究背景近年来对于股骨近端几何参数对骨折风险预测的认识越来越受到广大研究者的重视,虽然大家的研究及结果并不一致,甚至有完全相反的结果出现,这可能于其研究对象,样本量,及地域等有关系。Li et al.对股骨颈局部力学分析来预测髋部骨质疏松相关的骨折,研究发现通过股骨近端几何形态参数来分析股骨近端的几何力学情况,对预测髋部骨质疏松相关的骨折是非常有价值的,但分析股骨近端几何形态参数以及力学分析和骨密度分析一起并不能提高预测概率。Gundi et al.[1]等进行了一个五年的队列研究,来研究股骨颈骨密度和股骨颈干角对绝经后妇女的髋部骨折风险的预测,得出的结论是有较大的颈干角的女性,髋部骨折的发生率明显高于颈干角较小的女性,老年女性相对于年轻女性有更高的骨折风险,而颈干角较大且骨密度较低的女性中,老年人和年轻人发生髋部骨折的风险差异不大,没有统计学差异。他们还发现,骨密度较低的,具有比较长的髋部轴线,和较大股骨颈干角的女性,不管有无其他危险因素,都是髋部骨折的高危人群,然而他们也提出,股骨颈直径对髋关节骨折风险的预测是没有意义的。对于老年女性和青少年女性的比较,除了骨密度较低结合较大颈干角组这两个年龄段的女性骨折风险之间无统计学差异,其他比较都是老年女性的骨折风险较高,他们还比较了绝经后妇女的骨折风险和65岁以上女性骨折风险,发现两者之间的差异也无统计学差异。通过对以上数据的比较,作者得出结论:在他所测量的股骨近端几何形态参数中,股骨颈干角对骨折风险预测的作用最大,而且股骨颈干角对骨折风险的预测不受年龄和骨密度的影响,可以作为单独预测的因素。Kamath et al.[2]对135个病人进行了回顾分析,发现髋臼前倾角对骨折类型的预测似乎是没有意义的,但对骨折风险的预测可能存在一定的意义。作者总结说髋臼前倾角并不能预测老年病人的骨折类型,尽管髋臼前倾角发生变化可能带来髋臼股骨撞击综合征这个并发症,而这个并发症又容易导致股骨颈骨折.Im et al.[3]等研究了股骨近端几何形态参数在朝鲜人群中对骨折风险的预测,结果发现在转子间骨折的病人中,病人的髋部轴线和股骨颈干角是明显大于正常对照组。但是,髋部轴线的长度和股骨颈干角在股骨颈骨折的预测是没有意义的,也就是说股骨颈骨折组和正常对照组病人的髋部轴线以及股骨颈干角之间的差异是没有统计学意义的。此外股骨颈骨折组的病人的偏心距明显小于正常对照组,在转子间骨折组中,随着髋部轴线的增加,髋部轴线每增加lsd将导致股骨转子间骨折概率上升1.64倍。股骨颈干角没增加1sd将导致股骨转子间骨折发生率增加2.32倍。股骨颈骨折病人中,偏心距每增加1sd将导致股骨颈骨折风险提高2.03倍。Masako et al.[4]等人对日本女性进行了一项研究,他们通过临床CT来测量股骨近端几何形态参数从而来研究股骨近端几何形态参数与髋部骨折的风险关系。他们得出结论,股骨颈骨折的日本女性比正常日本女性有更长的髋部轴线,而股骨转子间骨折的日本女性相对于正常日本女性的股骨颈干角明显更大。Frost et al.[5]等人研究了髋臼前倾角和股骨前倾角对股骨颈骨折的影响,发现髋臼前倾角和股骨前倾角可能和髋部骨折类型有一定的关系。同时他们提出股骨颈长度以及年龄性别和髋部骨折类型没有相关性。但具体的机制尚不明确。Wang et al.[6]等人研究发现可能侧方摔倒的暴力以及更长的股骨移动力臂是导致髋部骨折的原因。髋部骨折组和正常对照组之间的骨密度,髋部轴线长度,股骨颈干角这几个股骨近端几何形态参数之间并无统计学差异。仅仅是股骨移动力臂和女性髋部骨折发生的风险有关系,所以最后得出结论摔倒时的移动或者旋转力臂会增加髋部骨折的风险。Nissen et al.[7-9]从基因的层面上分析股骨近端几何形态参数对髋部骨折的风险,发现股骨近端几何形态参数和骨折相关的4个基因多态性并无相关关系。骨质疏松和股骨近端几何形态参数是两个独立的预测髋部骨折风险的因素,两者之间并无相关性。同时他们的研究还发现不正常的股骨近端几何形态参数可能和特纳综合症有关,而且股骨近端几何形态参数会受到年龄和性别的影响。Pulkkinen et al.[10]等人研究发现了一个新的方法,即使用X线平片来预测髋部的力量加载从而对髋部骨折风险概率进行预测。Thevenot et al.[11]同样通过使用X线平片来对股骨近端几何形态参数进行研究。Dincel et al.[12]使用结合的股骨近端几何形态参数对髋部骨折风险进行预测研究发现,股骨转子间骨密度降低以及股骨近端几何形态学参数都能提供良好的骨折风险预测。Mikhail et al.[13]等人研究发现股骨近端几何形态参数的特点和骨头的力学性能密切相关,而且股骨近端几何形态参数能在不结合骨密度的情况下单独对骨折风险进行预测。但是股骨近端几何形态参数和骨密度相结合来预测骨折风险将更准确。Cheng et al. [14]等人使用CT研究股骨骨密度以及股骨近端几何形态参数,发现他们和骨折风险之间存在相关关系。他们的研究发现股骨近端骨折病人相对于正常组有较大的股骨颈横断面,而且相对而言,骨密度较小。Patron et al.[15]研究了股骨近端几何形态参数和髋部骨折的关系,发现股骨颈长度的增加会导致髋部骨折的发生率增高。Gnudi etal.[16]等人通过研究股骨近端几何形态参数和髋部骨折类型的关系,发现股骨近端几何形态参数对区分绝经后妇女的髋部骨折类型有一定的意义。他们的结果显示股骨近端几何形态参数结合骨密度能很好的对髋部骨折风险进行预测,而且股骨近端几何形态参数只对股骨颈骨折有预测作用,对髋部其他地方的骨折并无预测作用,其中股骨近端几何形态参数中的股骨颈干角是最有效的预测指标。Crabtree et al.[17]等指出虽然之前很多研究证明股骨近端几何形态参数和骨密度都能独立预测骨折风险,但他们的研究证实假如在使用股骨近端几何形态参数以及骨密度的同时进行髋部力量的分析,将更大的提高对高危女性髋部骨折的预测。Bergotet al.通过探讨DXA图像讨论髋部骨折风险和股骨近端几何形态参数之间的关系,他们发现单独对股骨颈长度的测量并不进行测量骨密度,就能很好的预测骨折风险,髋部骨折病人的股骨颈要明显长于对照组,而股骨头中心到转子间连线的垂直距离能最好的预测髋部骨折。他们提出股骨头中心到转子间连线的距离比髋部轴线,股骨颈轴线等对髋部骨折的预测效果更好。原因是:第一,股骨头中心到转子间连线的垂直距离可以不考虑患者的身高,第二,股骨头中心到转子间连线的垂直距离不考虑大转子和小转子的转子间距,这个间距可能会因为骨密度的变化而发生变化,第三,股骨颈长度对骨密度较低的个体骨折预测准确性不高,而股骨头中心到转子间连线的垂直距离则不受这个因素的影响。Gatti et al.[18]等人研究通过测量镜像抗弯曲强度可以预测股骨颈骨折的风险,他们通过此方法的测量可以间接的反应骨密度的情况从而预测骨折发生概率,他们的研究再一次证明股骨近端几何形态参数对髋部骨折的预测作用。Yang et al.[19]研究了中国台湾女性的股骨近端几何形态参数,发现只有股骨颈长度与髋部骨折风险成正相关,即随着股骨颈长度的增加,髋部骨折风险增大,股骨头直径和股骨颈直径对髋部骨折风险的预测没有太大意义。Nakumara et al.[20]比较了日本人和美国白人的股骨近端几何形态参数,他们发现尽管日本人股骨近端骨密度明显低于美国白人的股骨近端骨密度,但日本人髋部骨折的发生率确明显小于美国白人,所以他们考虑可能股骨近端几何形态参数可能对髋部骨折的发生,通过统计学分析,他们发现日本女性股骨颈较短,而且日本人的股骨颈干角也较小,其次日本人的平均身高也小于美国白人,这几个原因可能是导致日本人髋部骨折发生率远小于美国白人的原因,所以预测髋部骨折风险不能仅仅依赖股骨近端骨密度,股骨近端几何形态参数也可能发挥着至关重要的作用。Faulkner et al.[21]等人通过单独测量股骨近端几何形态参数来预测髋部骨折,得出结论髋部轴线长度能独立预测髋部骨折的风险。随着中国科学技术的发展,人的寿命越来越长,中国逐渐进入老年化社会,伴随而来的是各种老年性疾病的产生,髋部骨折仍然是老年人面临的一个主要问题,老年髋部骨折曾一度被誉为老年人的最后一次骨折,可见髋部骨折对老年的生活质量甚至生命的危险都是非常大的,大量研究表明股骨近端几何形态(如股骨前倾角、颈干角,髋部倾角、偏心距股骨头直径、股骨颈长度、股骨颈直径等)与髋部骨折的发生有一定的关系,然而当前并没有人研究年龄对股骨近端参数(如股骨前倾角、颈干角,髋部倾角、偏心距股骨头直径、股骨颈长度、股骨颈直径等)的影响。研究目的:探讨年龄对股骨近端几何学形态参数的影响。研究方法466位中国汉族的健康成人(353位男性和113位女性)的股骨近端参数(股骨前倾角、颈干角,髋部倾角、偏心距股骨头直径、股骨颈长度、股骨颈直径)分别由三个不同的观察者在南方医科大学南方医院影像科使用图像获取和传输系统(PACS)进行测量。测量完后把数据按不同年龄段分为七个亚组,分别是18岁到29岁组,30岁到39岁组,40岁到49岁组,50岁到59岁组,60岁到69岁组,70岁到79岁组,大于80岁组),然后使用统计学软件SPSS17.0进行统计学分析,并分析1、年龄对股骨近端几何形态的影响(不分年龄全部466例),2、年龄对不同性别股骨近端几何形态的影响,3、年龄对不同左右侧肢体股骨近端参数的影响。研究结果我们发现以466(男性353例,女性113例)例为整体时颈干角(P=0.000)和髋臼前倾角(P=0.000)在不同年龄组的差异有统计学意义,数据显示颈干角可能随年龄增大而减小,髋臼前倾角随着年龄的增大而增大,然而股骨前倾角(P=0.616)、偏心距(P=0.631)、股骨头直径(P=0.807)、股骨颈直径(P=0.993)以及股骨颈长度(P=0.070)这5个数据各在各年龄组中的差异没有统计学意义,皮尔森相关检验分析提示颈干角(P=0.000)和年龄存在负相关的关系,髋臼前倾角(P=0.000)和年龄之间存在正相关的关系,性别分层分析结果显示:男性颈干角(P=0.003)、髋臼前倾角(P=0.000)以及股骨颈长度(P=0.043)这三个数据在不同年龄组中存在统计学差异,女性股骨前倾角(P=0.014)、髋臼前倾角(P=0.024)、股骨颈长度(P=0.041)及股骨颈直径(P=0.038)在个年龄组中存在统计学差异,肢体两侧的分层分析结果与整体分析的结果基本一致。结论在我们回顾的这466例中国汉族健康成年人的股骨近端参数,我们的研究结果表明股骨颈干角和年龄之间可能存在负相关关系,即股骨颈干角可能随年年增大而减小,髋臼前倾角和年龄之间存在的正相关关系,即随着年龄的增大髋臼前倾角可能增大。此外,股骨近端几何形态可能存在性别差异。
[Abstract]:Research background in recent years has attracted more and more attention to the prediction of the risk of fracture risk of the proximal femur. Although the research and results are not consistent, and even the opposite results appear, it may be related to the.Li et al. on the local force of the neck of the femur, which may be related to the object, the sample size, and the ground area. An analysis is made to predict fracture associated with hip osteoporosis. It is found that the geometry of the proximal femur can be used to analyze the geometries of the proximal femur. It is of great value to predict the fracture associated with the hip. However, the analysis of the geometrical parameters of the proximal femur and the analysis of the force and bone density can not be improved. A five year cohort study of the predictive probability,.Gundi et al.[1], was conducted to study the risk of femoral neck bone density and femoral neck dry angle for hip fracture in postmenopausal women. The conclusion is that women with larger neck horns have higher incidence of hip fractures than those with smaller cervical horns, and older women are relative to younger women. Women have higher risk of fracture, and there is no significant difference in the risk of hip fractures between the elderly and the young in the older and lower bone density women. They also found that the lower bone density, the longer hip axis, and the larger femur neck dry angle women, whether or without other risk factors, are also found. It is also a high risk group for hip fractures, but they also suggest that there is no significance in predicting the risk of hip fracture with the diameter of the neck of the femur. There is no statistically significant difference in the risk of fracture between the older women and the young women, except for the lower bone density and the larger neck dry angle group at the two age groups, and the other comparisons are the elderly. The risk of fracture in women was higher. They also compared the risk of fracture in postmenopausal women and the risk of fracture of women over 65 years old, and found no difference between the two. By comparison of the above data, the author concluded that the femoral neck dry angle is a prediction of the risk of fracture in the geometric parameters of the proximal femur he measured. The impact of the femoral neck dry angle on fracture risk is not affected by age and bone mineral density. A retrospective analysis of 135 patients,.Kamath et al.[2], can be used as a separate predictor of the fracture. It is found that the prediction of the acetabular obliquity for the type of fracture seems to be meaningless, but the prediction of the risk of fracture may be certain. The authors conclude that the acetabular obliquity does not predict the type of fracture in the elderly, although the acetabular obliquity may lead to the complication of the acetabular femoral impingement syndrome, and this complication can easily lead to the femoral neck fracture.Im et al.[3] and so on to study the geometrical parameters of the proximal femur in the Korean population. The results showed that in patients with intertrochanteric fractures, the patients' hip axis and the femoral neck dry angle were significantly greater than those of the normal control group. However, the length of the axis of the hip and the femoral neck dry angle in the prediction of the femoral neck fracture were not significant, that is, the hip axis of the femoral neck fracture group and the normal control group. The difference between the femoral neck dry angle is not statistically significant. In addition, the eccentricity of the patients in the femoral neck fracture group is significantly smaller than that of the normal control group. In the intertrochanteric fracture group, with the increase of the hip axis, the probability of intertrochanteric fracture of the femur will rise 1.64 times with each increase of the hip axis, and the femoral neck dry angle does not increase 1sd will lead to the femoral neck. The incidence of intertrochanteric fractures increased by 2.32 times. In patients with femoral neck fractures, each increase of 1sd will lead to a 2.03 times increase in the risk of femoral neck fracture by 2.03 times.Masako et al.[4] and others to study the Japanese women. They measured the geometrical parameters of the proximal femur by using the clinical CT to study the geometric parameters of the proximal femur. They concluded that Japanese women with femoral neck fractures had longer hip axis than normal Japanese women, while Japanese women with intertrochanteric fractures were significantly larger than those of normal Japanese women,.Frost et al.[5] and others studied the acetabular anteversion and the femur front angle to the femoral neck bone. The effect of the fracture of the acetabulum and the femur front angle may be related to the type of hip fracture. There is no correlation between the length of the neck of the femur and the sex of the hip and the type of hip fracture. However, the specific mechanism is not clear and the.Wang et al.[6] and other studies have found that the violence that can be side fall and the longer femur can be found. There is no statistical difference between the bone density of the hip fracture group and the normal control group, the length of the hip axis, the femoral neck dry angle and the geometric parameters of the proximal femur. It is only the risk of the femur movement arm and the female hip fracture, so the conclusion is concluded. The risk of hip fracture at the time of moving or rotating arms increased.Nissen et al.[7-9] from the gene level to analyze the risk of hip fracture in the proximal femur. It was found that there was no correlation between the geometric parameters of the proximal femur and the 4 genetic polymorphisms associated with the fracture. The two independent factors that predict hip fracture risk have no correlation. Their study also found that abnormal proximal femur geometric parameters may be associated with Turner syndrome, and the geometric parameters of the proximal femur were found by age and sex.Pulkkinen et al.[10] and others. A new method is to predict the hip fracture risk probability using X-ray plain film to predict the hip fracture risk probability..Thevenot et al.[11] is also used to study the geometrical parameters of the proximal femur by X-ray plain film. The risk of hip fracture is pretreated by.Dincel et al.[12] combined with the proximal femur geometry. The study found that the reduction of bone density between the femur intertrochanter and the geometric morphological parameters of the proximal femur can provide a good fracture risk prediction.Mikhail et al.[13] et al. Studies have found that the characteristics of the geometrical parameters of the proximal femur are closely related to the mechanical properties of the bone, and the geometrical parameters of the proximal femur can not be combined with the bone density. Fracture risk was predicted separately. But the combination of the proximal femoral geometry and bone density to predict the risk of fracture would be more accurate..Cheng et al. [14] and others used CT to study the femoral bone mineral density and the proximal femur geometric shape parameters, and found a correlation between the fracture risk and the fracture risk. Their findings were found to be found. The patients with proximal femoral fractures have a larger femoral neck cross section relative to the normal group, and relatively, the smaller bone density.Patron et al.[15] studies the relationship between the geometrical parameters of the proximal femur and the hip fracture. It is found that the increase of the length of the neck of the femur leads to an increase in the incidence of hip fractures by.Gnudi etal.[16] and others through the study of the femur. The relationship between the geometric shape parameters of the proximal end and the type of hip fracture found that the geometric shape parameters of the proximal femur have some significance to distinguish the type of hip fracture in postmenopausal women. Their results show that the geometric shape parameters of the proximal femur combined with the bone density can predict the risk of hip fracture well, and the geometric shape of the proximal femur. The parameters only predict the femoral neck fracture and have no predictive effect on other hip fractures. The femoral neck dry angle in the proximal femur geometric shape parameters is the most effective predictor of.Crabtree et al.[17]. Although many previous studies have proved that the morphological parameters and bone density of the proximal femur can be independently predicted. Risk reduction, but their study confirmed that the analysis of hip strength at the same time using geometric parameters and bone density of the femur would increase the prediction of hip fracture in high-risk women by.Bergotet al. to discuss the relationship between the risk of hip fracture and the geometric morphological parameters of the femoral bone by exploring the DXA image. It was found that the measurement of the length of the neck of the femur alone did not measure the bone density, and the fracture risk was well predicted. The femoral neck of the patients with hip fractures was significantly longer than that in the control group, while the vertical distance between the femoral head center and the intertrochanteric connection was the best to predict the hip fracture. The axis and the axis of the neck of the femur are better for predicting hip fractures. First, the vertical distance between the center of the femoral head and the intertrochanteric connection can not consider the patient's height. Second, the vertical distance between the center of the femoral head and the intertrochanteric connection does not consider the distance between the large rotors and the small rotators, which may be due to the bone density. Changes in degree change. Third, the length of the neck of the femur is not well predicted for the individual bone fracture with low bone density, and the vertical distance between the femoral head center and the intertrochanteric connection is not affected by this factor..Gatti et al.[18] and other studies can predict the risk of fracture of the neck of the femur by measuring the mirror anti bending strength. The measurement of this method can indirectly reflect the bone density and predict the probability of fracture occurrence. Their study once again demonstrated the predictive role of the proximal femur geometric shape parameters to the hip fracture.Yang et al.[19], which studied the geometric parameters of the proximal femur of the women in Taiwan, China, and found that only the length of the neck of the femur and the hip fracture were found. The risk is positively correlated, that is, with the increase of the length of the neck of the femur, the risk of hip fracture increases, the diameter of the femoral head and the diameter of the femoral neck have little significance for the risk of hip fracture..Nakumara et al.[20] compares the geometrical parameters of the proximal femur of the Japanese and American white femur, and they find that the proximal bone density of the femur of the Japanese femur is clear. It was significantly lower than the proximal femur density of the white femur of the United States, but the incidence of Japanese hip fractures was significantly smaller than that of white Americans, so they considered possible hip fractures in the proximal femur. By statistical analysis, they found that the Japanese femur neck was shorter and the Japanese femur neck was smaller. The average height of the Japanese is smaller than the American white, which may cause the Japanese hip fracture rate to be far less than the American whites, so the risk of hip fracture is not only dependent on the proximal femur density, and the proximal femur geometric parameters may also play a vital role in.Faulkner et al.. [21] and others predict hip fracture by measuring the geometrical parameters of the proximal femur alone, and conclude that the length of the hip axis can predict the risk of hip fracture independently. With the development of science and technology in China, the life expectancy of the hip is growing, and China has gradually entered the aging society, accompanied by the generation of various senile diseases and hip bone. Fracture is still a major problem for the elderly. Hip fracture in the elderly was once known as the last fracture of the elderly. It can be seen that hip fractures are very dangerous to the life quality and life of the elderly. A large number of studies have shown that the geometry of the proximal femur, such as the anterior femoral obliquity, the neck dry angle, the hip inclination, and the eccentricity of the femur. The diameter of the head, the length of the neck of the femur, the diameter of the neck of the femur, etc. have a certain relationship with the occurrence of hip fractures. However, no one is currently studying the influence of age on the parameters of the proximal femur (such as the femur front angle, the neck dry angle, the hip inclination, the eccentricity of the femoral head diameter, the neck length of the femur, the diameter of the femur neck, etc.). The effects of end geometry morphological parameters. Methods 466 Chinese Han healthy adults (353 male and 113 women) with proximal femur parameters (femur front angle, neck dry angle, hip inclination, eccentricity femoral head diameter, femoral neck length, femoral neck diameter) were observed by three different observers at the Southern Hospital of Southern Medical University, respectively. The Department used image acquisition and transmission system (PACS) to measure the data. After measuring, the data were divided into seven subgroups according to age groups, namely, 18 to 29 years old group.
【学位授予单位】:南方医科大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:R683
【相似文献】
相关期刊论文 前10条
1 刘勤,王慧娟,李秀平,吴小燕,聂小芳;中国人股骨近端参数统计[J];解剖与临床;2005年01期
2 吴云刚;肖鲁伟;童培建;;激素性股骨头坏死患者股骨近端骨髓成骨活性下降的研究[J];中国中医骨伤科杂志;2008年06期
3 张强;王岩;陈怡婷;郑诚功;魏鸿文;;中国人股骨头缺血性坏死股骨近端的形态研究[J];医用生物力学;2009年02期
4 汤世斌;;侧卧位和仰卧位股骨近端腔内钉治疗股骨近端周围骨折的体会[J];吉林医学;2010年13期
5 王子琛;张振明;王怀兵;;股骨近端角度锁定板治疗老年股骨转子间骨折27例疗效分析[J];辽宁医学院学报;2011年02期
6 孟祥杰;葛世荣;;基于逆向工程技术的人体股骨近端形态参数误差分析[J];中国组织工程研究与临床康复;2011年35期
7 杜长岭;马信龙;张_";马剑雄;付鑫;卢晋;;双侧股骨近端对称性及解剖形态的三维重建研究[J];生物医学工程与临床;2012年03期
8 姜轶;;股骨近端角度锁定板治疗老年股骨转子间骨折的疗效分析[J];中国医药指南;2012年12期
9 杨晓龙;邱瑾;张伟;聂富祥;;股骨近端解剖锁定板治疗股骨转子间骨折54例疗效观察[J];吉林医学;2012年26期
10 龚家富;;股骨近端解剖锁定板治疗老年股骨粗隆间骨折[J];航空航天医学杂志;2012年09期
相关会议论文 前10条
1 孙培栋;毕振宇;赵卫东;欧阳钧;;股骨近端在侧方跌倒中受力状态的有限元研究[A];中国解剖学会2013年年会论文文摘汇编[C];2013年
2 刘勤;王慧娟;李秀平;聂小芳;吴小燕;;回归分析方法在股骨近端参数测量中的运用[A];第11届全国中西医结合骨伤科学术研讨会论文汇编[C];2003年
3 陈成旺;温宏;张宇;潘孝云;;年龄及性别对股骨近端解剖参数的影响及其临床意义[A];2012年浙江省骨科学术年会论文集[C];2012年
4 张帅;张海波;段宏;闵理;张晖;屠重棋;;股骨近端骨缺损与骨折相关性的三维有限元研究[A];第20届中国康协肢残康复学术年会论文选集[C];2011年
5 史庆轩;胡宏伟;宁廷民;侯存强;李庆峰;包健;;股骨近端锁定板和防旋股骨近端髓内钉治疗老年股骨粗隆间骨折的治疗比较[A];第20届中国康协肢残康复学术年会论文选集[C];2011年
6 王庆甫;张卫;孙纲;;股骨近端微创手术疗法的临床研究(附11例报告)[A];第九次全国中西医结合创伤骨科学术大会论文汇编[C];2001年
7 张帅;屠重棋;段法;闵理;周勇;张树良;姜勇;冯品;;股骨近端骨缺损与骨折相关性的有限元分析[A];第20届中国康协肢残康复学术年会论文选集[C];2011年
8 高均宏;朱海涛;冯健;王文跃;胡祖愉;王俭;胡江;刘洪新;;亚洲型股骨近端抗旋髓内钉微创治疗老年不稳定股骨转子间骨折[A];浙江省医学会骨科学分会30年庆典暨2011年浙江省骨科学学术年会论文汇编[C];2011年
9 何飞熊;王巍;谢俊;;股骨近端解剖锁定型钢板治疗股骨近端粉碎性骨折[A];2012年浙江省骨科学术年会论文集[C];2012年
10 杨阳;马信龙;马剑雄;王志彬;王志钢;马宝意;;防腐股骨与PMMA人工股骨近端标本的生物力学差异[A];第七届全国创伤学术会议暨2009海峡两岸创伤医学论坛论文汇编[C];2009年
相关重要报纸文章 前2条
1 ;股骨近端三维几何形态重建[N];中国医药报;2003年
2 印高乐;台湾医生研发出新型人工关节[N];医药经济报;2002年
相关博士学位论文 前8条
1 曹振华;股骨近端形态学参数与股骨近端骨折风险的相关性及影响因素分析[D];南方医科大学;2016年
2 吕林蔚;股骨近端结构形态对其强度影响的生物力学数值仿真研究[D];吉林大学;2014年
3 周峰;股骨近端创伤的生物力学和临床研究[D];苏州大学;2003年
4 杨沛彦;股骨近端形态与锥形柄全髋生物学固定的相关研究[D];苏州大学;2006年
5 左建林;基于三维CT扫描的股骨近端髓腔形态学及全髋股骨侧假体的优化设计研究[D];吉林大学;2008年
6 张强;中国人股骨头缺血性坏死人群股骨近端髓腔形态研究及其人工股骨柄的研制[D];中国人民解放军军医进修学院;2009年
7 赵继军;高压氧促进激素性股骨头坏死多孔假体植入后骨整合的实验研究[D];华中科技大学;2008年
8 刘宏伟;CroweⅣ型成人DDH股骨近端形态测量及(EBM RP)金属3D打印个性化人工股骨柄假体研究[D];苏州大学;2015年
相关硕士学位论文 前10条
1 严亮;成人髋关节发育不良患者股骨近端的解剖形态学特征[D];复旦大学;2013年
2 张晓辉;外科手术治疗股骨近端肿瘤的疗效分析[D];山西医科大学;2016年
3 谢亮文;不同属性建模方法对股骨近端有限元分析影响的研究[D];福建医科大学;2015年
4 倪新宇;股骨近端锁定钢板内固定术治疗股骨转子间骨折的临床观察[D];辽宁中医药大学;2016年
5 江艺;一项对466个中国汉族健康成人的回顾性分析:年龄对股骨近端几何形态的影响[D];南方医科大学;2016年
6 汪伟;正常国人股骨近端三维几何形态测量及相关研究[D];中国人民解放军军医进修学院;2002年
7 付鑫;人股骨近端空间结构三维重建及力学性能的三维有限元分析[D];天津医科大学;2011年
8 王磊;股骨近端内外旋转角度的测定研究[D];河北医科大学;2013年
9 何双建;股骨近端锁定钢板和亚洲型防旋股骨近端髓内钉治疗老年股骨转子间骨折的疗效比较[D];苏州大学;2013年
10 贺强;股骨近端解剖参数测量与股骨近端髓内钉相关性分析[D];南华大学;2013年
,本文编号:1957566
本文链接:https://www.wllwen.com/yixuelunwen/waikelunwen/1957566.html