无创测量静脉氧饱和度方法研究
本文选题:静脉氧饱和度 + 动脉氧饱和度 ; 参考:《深圳大学》2015年硕士论文
【摘要】:静脉氧饱和度(Sv O2:Venous Oxygen Saturation)是反映血液经过毛细血管物质交换后,含氧血红蛋白(Hb O2:Oxyhemoglobin)占全部血红蛋白(t Hb:total Hemoglobin)比例的指标。相对于反映血液氧气供给能力的动脉氧饱和度(Sa O2:Arterial Oxygen Saturation),静脉氧饱和度反映的是组织对氧气的消耗能力与需求程度。静脉氧饱和度的变化与动脉氧饱和度、血红蛋白(Hemoglobin)含量、心排量(CO:Cardiac Output),甚至是周围环境都有一定关联,它不仅是反映人体呼吸功能的参数也是反映组织氧气利用的一项指标,因此监测静脉氧饱和度对于准确评估人体生理状况具有相当的意义。目前脉搏血氧仪(Pulse Oximetry)作为一种无创、连续动脉氧饱和度监测设备,已经被广泛应用于临床。但是市场上仍然没有能够无创、连续监测静脉氧饱和度的设备,有创测量设备由于其操作较为复杂、具有一定风险无法经常使用,临床上多数时候都是凭借医生的经验来判断人体对氧气的消耗和需求情况。然而通常情况下,不同人、不同器官的氧气消耗量大相径庭,即使是相同的人在不同的环境与状态下对氧气的需求量也不一样。为了能够无创、连续监测静脉氧饱和度的变化,本文在原有脉搏氧饱和度测量基本方法的基础上,提出了一种新的基于光电容积波(Photoplethismograpyh)的无创、连续局部静脉氧饱和度监测方法。通过激励系统人为地增强原本微弱的静脉信号的强度,将脉搏氧测量过程中的静脉干扰作为静脉氧测量的有用信号,成功集到了静脉光电容积波信号。并且利用搭建的硬件、软件、算法平台,对该方法进行了缺氧状态下的有创实验验证。实验结果表明,测试设备能够有效反映缺氧状态下静脉氧饱和度的整体下降趋势,人工添加激励的方法既能有效增强了静脉信号的强度,也不会影响动脉信号的采集与处理。标定后的测试设备与无创参考设备的脉搏氧饱和度测量结果,均方根误差为0.845,相关系数为0.997;测试设备与有创参考设备的静脉氧饱和度测量结果均方根误差为7.75,相关系数为0.86;氧气消耗量测量结果均方根误差为2.47。此外,测试设备静脉氧饱和度的测量结果部分趋势,与手指末端循环的灌注指数(PI:Perfusion Index)存在一定关联,灌注指数增高时静脉氧饱和度在一定范围内增高,灌注指数下降时静脉氧饱和度也随之下降。
[Abstract]:SvO2: Venous oxygen saturation (SvO2: Venous oxygen Saturation) is an index that reflects the proportion of HB O 2: oxygen hemoglobin to total hemoglobin after the capillary substance exchange. Compared with the arterial oxygen saturation (sa _ O _ 2: Arterial oxygen saturation), the venous oxygen saturation reflects the oxygen consumption and demand of the tissue. The changes of venous oxygen saturation are related to arterial oxygen saturation, hemoglobin content, CO: Cardiac output, and even the surrounding environment. It is not only a parameter reflecting human respiratory function, but also an index of tissue oxygen utilization. Therefore, monitoring venous oxygen saturation is of great significance for accurate evaluation of human physiological status. Pulse oximetry, as a noninvasive, continuous arterial oxygen saturation monitoring device, has been widely used in clinical practice. However, there is still no non-invasive, continuous monitoring equipment for venous oxygen saturation in the market. Because of its complex operation, the invasive measurement equipment is not used frequently because of its complex operation. Most of the clinical experience is based on the experience of the body to judge the consumption and demand for oxygen. Usually, however, oxygen consumption varies greatly from person to person and from organ to organ, and even the same person needs different oxygen in different environments and states. In order to continuously monitor the changes of venous oxygen saturation, a new non-invasive and continuous local venous oxygen saturation monitoring method based on photovoltaic volume wave (Photoplethismograpyh) is proposed based on the original method of pulse oxygen saturation measurement. By artificially increasing the intensity of the original weak venous signal, the venous interference in the pulse oxygen measurement process is taken as the useful signal for the venous oxygen measurement, and the venous photoelectric volume wave signal is successfully collected. Using the hardware, software and algorithm platform, the method is verified by the invasive experiment under anoxic condition. The experimental results show that the testing equipment can effectively reflect the overall decreasing trend of venous oxygen saturation under anoxic condition. The artificial stimulation method can not only effectively enhance the intensity of venous signals, but also will not affect the acquisition and processing of arterial signals. The measured results of pulse oxygen saturation of calibrated test equipment and noninvasive reference equipment, The root mean square error was 0.845, the correlation coefficient was 0.9977.The root mean square error was 7.75 and the correlation coefficient was 0.86, and the root mean square error of oxygen consumption was 2.47. In addition, some trends of venous oxygen saturation were related to the Pi: perfusion index of finger end circulation, and the venous oxygen saturation increased in a certain range when the perfusion index increased. The venous oxygen saturation decreased with the decrease of perfusion index.
【学位授予单位】:深圳大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:R614
【参考文献】
相关期刊论文 前10条
1 杨琳;张松;杨益民;罗志昌;;基于重搏波谷点的脉搏波波形特征量分析[J];北京生物医学工程;2008年03期
2 张志清;光学传感血氧饱和度的检测[J];传感器世界;1999年02期
3 邓渊,李光宇,董声焕;无损伤脉搏血氧饱和度监测技术[J];电子技术应用;1994年03期
4 张虹,孙卫新,金捷;脉搏血氧饱和度检测系统设计中干扰信号的处理方法[J];国外医学.生物医学工程分册;2000年02期
5 柳兆荣,李惜惜;桡动脉压力波随生理参数的变化[J];力学学报;1982年03期
6 莫蓓蓉;刘海丘;韩雪飞;李新利;;无创血流动力学监测在危重患者液体复苏中的应用[J];中国实用护理杂志;2006年19期
7 郭萍,孙卫新,金捷,于宝萍,魏萍;脉搏血氧仪定标曲线的研究[J];西安医科大学学报(中文版);2000年02期
8 徐可欣;王继寸;余辉;杜非;;脉搏波时域特征与血压相关性的研究[J];中国医疗设备;2009年08期
9 白金星;赵子婴;王艳萍;;脉搏波的小波变换过零点分析方法研究[J];医疗卫生装备;2006年01期
10 姚翔;;基于示波法的无创血压测量[J];中国医学装备;2007年07期
相关博士学位论文 前2条
1 向海燕;无创伤人体逐拍动脉血压测量技术[D];第四军医大学;2005年
2 李顶立;基于脉搏波的无创连续血压测量方法研究[D];浙江大学;2008年
,本文编号:2085277
本文链接:https://www.wllwen.com/yixuelunwen/waikelunwen/2085277.html