当前位置:主页 > 医学论文 > 外科论文 >

降钙素基因相关肽对大鼠骨髓源性巨噬细胞破骨分化和骨吸收功能影响的实验研究

发布时间:2018-07-13 18:56
【摘要】:在临床上我们发现中枢神经系统损伤(如截瘫或者颅脑损伤)的患者若同时伴有四肢长骨骨折时,常常在骨折区出现大量骨痂的过度生长,严重的甚至出现异位骨化,其骨折愈合的速度也快于不伴中枢神经系统受损的四肢长骨骨折患者;相反的若是骨折患者同时伴有明显周围神经损伤时,骨折愈合的过程将出现明显的延长,延迟愈合甚至是骨不愈合的可能增高。大量文献表明中枢神经受到损伤后,神经肽类物质在外周血液中的浓度升高,这可能是导致骨痂过度生长的重要原因;这些神经肽类物质其中就包括降钙素基因相关肽(CGRP)和P物质等。降钙素基因相关肽(CGRP)是一种体内广泛分布的神经肽,研究发现其具有促成骨的作用,但是CGRP对骨吸收中破骨前体细胞即骨髓源性巨噬细胞(BMMs)的是否具有调控作用尚不清楚。因此我们课题组设计了相应实验,来探究CGRP对SD大鼠骨髓源性巨噬细胞(BMMs)破骨分化和骨吸收功能的影响,阐明其影响骨代谢的分子机制,为骨修复和骨重建提供新的思路。实验一降钙素基因相关肽对大鼠骨髓源性巨噬细胞破骨分化的影响目的:研究降钙素基因相关肽对大鼠骨髓源性巨噬细胞破骨分化的影响。方法:(1)采用差速贴壁的方法分离出SD大鼠骨髓源性巨噬细胞,原代培养并传代,而后加入适当浓度的s RANKL和M-CSF,进行大鼠破骨前体细胞的破骨分化诱导。(2)实验分组:A:空白对照组(不含CGRP);B:高剂量CGRP处理组(CGRP浓度为10-7mol/L);C:中剂量CGRP处理组(CGRP浓度为10-8mol/L);D:低剂量CGRP处理组(CGRP浓度为10-9mol/L)。(3)加入不同浓度CGRP后破骨分化诱导培养7天,通过抗酒石酸酸性磷酸酶染色法(TRAP染色)观察破骨细胞形态并对成熟的破骨细胞进行计数分析。(4)加入不同浓度CGRP后破骨分化诱导7天,通过RT-PCR方法检测破骨分化特异性特基因(RANK、TRAP、NFATc1)m RNA的表达。(5)对加入不同浓度CGRP破骨分化诱导7天后的破骨细胞进行处理,通过Western-blot检测破骨特征性TRAP和RANK蛋白的表达。结果:(1)TRAP染色显示,相对于空白对照组不同浓度CGPR处理组的成熟破骨细胞数目显著减少,有统计学差异(P0.05)并且随CGRP浓度的增高成熟破骨细胞数减少(P0.05),组间亦有明显差异(P0.05)。(2)RT-PCR检测破骨分化特异性特基因RANK、TRAP、NFATc1 m RNA和Western-blot测破骨特征性TRAP、RANK蛋白的表达,结果提示不同浓度CGRP组均明显低于空白对照组,具有统计学差异(P0.05)。结论:本实验通过体外骨髓源性巨噬细胞诱导培养破骨细胞的方法,观察到CGRP具有抑制破骨前体细胞破骨分化的作用,提示CGRP在骨修复及骨重建中可能发挥重要的作用。实验二降钙素基因相关肽对大鼠骨髓源性巨噬细胞破骨诱导后骨吸收功能的影响目的:研究降钙素基因相关肽对大鼠骨髓源性巨噬细胞破骨诱导后骨吸收功能的影响。方法:(1)采用差速贴壁的方法分离出SD大鼠骨髓源性巨噬细胞,原代培养并传代,而后加入适当浓度的s RANKL和M-CSF,进行大鼠破骨前体细胞的破骨分化诱导。(2)实验分组:A:空白对照组(不含CGRP);B:高剂量CGRP处理组(CGRP浓度为10-7mol/L);C:中剂量CGRP处理组(CGRP浓度为10-8mol/L);D:低剂量CGRP处理组(CGRP浓度为10-9mol/L)。(3)用不含CGRP的破骨诱导液培养骨髓源性巨噬细胞7天后,采用抗酒石酸酸性磷酸酶染色法(TRAP染色)观察破骨细胞形态,并对破骨细胞进行鉴别。(4)在不同时间点,通过WST-1法检测不同浓度CGRP对大鼠破骨前体细胞BMMs增殖率的影响。(5)加入不同浓度CGRP后将破骨前体细胞BMMs破骨分化诱导7天,通过RT-PCR检测破骨细胞骨吸收功能性基因MMP-9、Cathepsin K m RNA的表达。(6)将BMMs接种于骨磨片上,用含有不同浓度CGRP的破骨诱导液诱导7天后,对骨磨片行甲苯胺蓝染色检测CGRP对破骨细胞的骨吸收功能的影响。结果:(1)与空白对照组相比,各CGRP处理组对破骨前体细胞BMMs的增殖具有抑制作用,且随着CGRP浓度的升高,抑制作用更加明显。(2)RT-PCR结果显示,与空白对照组相比,CGRP处理组明显抑制破骨相关酶MMP-9和Cathepsin K m RNA的表达。(3)甲苯胺蓝骨磨片染色显示,与空白对照组相比,CGRP处理组的骨陷窝数目明显减少,具有统计学差异(P0.05),且CGRP处理组浓度与陷窝数量呈负相关性。结论:本实验通过体外骨髓源性巨噬细胞诱导培养破骨细胞的方法,观察到CGRP具有抑制破骨前体细胞增殖以及抑制骨吸收功能的作用,为CGRP临床治疗骨折提供了重要的理论依据。
[Abstract]:Clinically, we find that patients with central nervous system injury, such as paraplegia or craniocerebral injury, are often accompanied by long bone fractures in the extremities, often in a large number of excessively growing callus in the fracture area, serious or even ectopic ossification, and the rate of fracture healing is faster than that of the extremities fracture of the extremities without the impairment of the central nervous system. Conversely, if a fracture patient is accompanied by an obvious peripheral nerve injury, the process of fracture healing will appear significantly prolonged, delayed union or even a possible increase in bone nonunion. A large number of documents suggest that the concentration of neuropeptides in the peripheral blood increases after the injury of the central nervous system, which may lead to excessive growth of the callus. The important reasons are that these neuropeptides include calcitonin gene related peptide (CGRP) and substance P. The calcitonin gene related peptide (CGRP) is a widely distributed neuropeptide in the body, and it has been found to have the role of inducing bone, but CGRP has a effect on the bone resorption of osteoclast, namely, bone marrow derived macrophages (BMMs). There is no clear regulation. Therefore, we have designed a corresponding experiment to explore the effect of CGRP on bone destruction and bone resorption of bone marrow derived macrophages (BMMs) in SD rats, elucidate the molecular mechanism of its effect on bone metabolism, and provide a new way for bone repair and bone reconstruction. The effect of the osteoclast differentiation of sex macrophage Objective: To study the effect of calcitonin gene related peptide on the osteoclast differentiation of rat bone marrow derived macrophages. Methods: (1) the bone marrow derived macrophages of SD rats were separated by differential adherence, and the primary culture and generation were carried out, then the appropriate concentration of s RANKL and M-CSF were added to the rat bone marrow precursor. Osteoclast differentiation induction. (2) experimental groups: A: blank control group (without CGRP); B: high dose CGRP treatment group (CGRP concentration 10-7mol/L); C: medium dose CGRP treatment group (CGRP concentration 10-8mol/L); D: low dose CGRP treatment group (3) after adding different concentrations of osteoclast differentiation induction culture for 7 days, through the acidity of tartaric acid The morphology of osteoclasts was observed by phosphatase staining (TRAP staining) and the mature osteoclasts were counted and analyzed. (4) after adding different concentrations of CGRP, the osteoclast differentiation was induced for 7 days, and the expression of the specific specific gene of osteoclast (RANK, TRAP, NFATc1) m RNA was detected by the RT-PCR method. (5) the rupture of the osteoclast with different concentrations of osteoclast was induced for 7 days. Bone cells were treated and the expression of osteoclast characteristic TRAP and RANK protein were detected by Western-blot. Results: (1) TRAP staining showed that the number of mature osteoclasts in the CGPR treatment group with different concentrations in the blank control group decreased significantly (P0.05) and the number of mature osteoclasts decreased with the increase of CGRP concentration (P0.05), and the number of mature osteoclasts decreased with the concentration of CGRP (P0.05). There were also significant differences (P0.05). (2) RT-PCR detected osteoclast specific specific gene RANK, TRAP, NFATc1 m RNA and Western-blot to detect bone characteristic TRAP and RANK protein expression. The results showed that the different concentrations of CGRP group were significantly lower than those in the blank control group, with statistical difference (P0.05). Conclusion: this experiment was induced by bone marrow derived macrophages in vitro. To guide the cultivation of osteoclast, the effect of CGRP on osteoclast differentiation of osteoclast cells was observed, suggesting that CGRP may play an important role in bone repair and bone reconstruction. Experiment two the effect of calcitonin gene related peptide on bone resorption after bone marrow induced bone marrow induced bone destruction in rats: the study of calcitonin gene phase The effect of peptide on bone resorption after osteoclast induced bone marrow macrophages in rats. Methods: (1) the bone marrow derived macrophages of SD rats were separated by differential adherence, and the primary culture and generation were used, and then the appropriate concentration of s RANKL and M-CSF were added to the osteoclast differentiation induction of the rat osteoclast cells. (2) the experimental group: A: blank The control group (without CGRP), B: high dose CGRP treatment group (CGRP concentration was 10-7mol/L), C: medium dose CGRP treatment group (CGRP concentration 10-8mol/L), D: low dose CGRP treatment group (CGRP concentration). (3) culture of bone marrow derived megagaric cells with no osteoclast induction solution for 7 days, using tartaric acid acid phosphatase staining (staining) view The morphology of bone cells was detected and the osteoclasts were identified. (4) at different time points, the effect of different concentrations of CGRP on the proliferation rate of BMMs in rat osteoclast cells was detected by WST-1. (5) after adding different concentrations of CGRP, the osteoclast differentiation of the osteoclast cells was induced for 7 days, and RT-PCR was used to detect the bone resorption functional gene MMP-9, Ca The expression of thepsin K m RNA. (6) inoculating BMMs on the bone grinding plate and using the osteoclast induction solution containing different concentrations of CGRP to induce the bone resorption of the osteoclast by the staining of toluidine blue on the bone mill. Results: (1) the proliferation of the BMMs in the osteoclast cells was inhibited by each CGRP treatment group compared with the blank control group. The inhibitory effect was more obvious with the increase of CGRP concentration. (2) RT-PCR results showed that compared with the blank control group, the CGRP treatment group obviously inhibited the expression of osteoclast related enzyme MMP-9 and Cathepsin K m RNA. (3) toluidine blue bone grinding plate staining showed that the number of bone lacunae in the CGRP treatment group decreased significantly compared with the blank control group. There was a negative correlation between the study difference (P0.05), and the concentration of CGRP treatment group was negatively correlated with the number of lacunae. Conclusion: this experiment shows that CGRP can inhibit the proliferation of osteoclast cells and inhibit bone resorption by inducing the culture of osteoclasts from bone marrow derived macrophages in vitro. It provides an important theoretical basis for the fracture of CGRP in the clinical treatment of fracture. According to it.
【学位授予单位】:第四军医大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:R68

【相似文献】

相关期刊论文 前10条

1 ;豚鼠巨噬细胞经P_(204)处理后的抗石英细胞毒作用[J];国外医学参考资料(卫生学分册);1976年04期

2 邓侠进;;巨噬细胞的抗癌作用[J];遵义医学院学报;1979年02期

3 陆天才;;疾病对肺巨噬细胞的影响[J];煤矿医学;1982年01期

4 郭瑞清;祝彼得;;一种分离巨噬细胞的简单方法[J];滨州医学院学报;1990年02期

5 谢志坚;巨噬细胞异质性[J];医学综述;2001年06期

6 饶艳;运动及神经内分泌对巨噬细胞功能的调节[J];体育与科学;2002年05期

7 朱金元;;吸烟对肺巨噬细胞的影响[J];浙江医学教育;2003年01期

8 张俊峰;过氧化物酶体增殖物激活受体与单核/巨噬细胞系[J];医学综述;2004年03期

9 韦锦学;顾军;;巨噬细胞的激活诱导死亡[J];生命科学;2006年02期

10 李晓曦;郭宁;曹雪涛;;肿瘤相关巨噬细胞促进肿瘤生长与转移的研究现状[J];中国肿瘤生物治疗杂志;2008年01期

相关会议论文 前10条

1 史玉玲;王又明;丰美福;;巨噬细胞激活作用的研究[A];中国细胞生物学学会第五次会议论文摘要汇编[C];1992年

2 吴国明;周辉;;巨噬细胞和创伤纤维化[A];2009年浙江省骨科学学术年会论文汇编[C];2009年

3 李奇;王海杰;;透明质酸对于淋巴结巨噬细胞运动的影响[A];解剖学杂志——中国解剖学会2002年年会文摘汇编[C];2002年

4 刘革修;欧大明;刘军花;黄红林;廖端芳;;丙丁酚在体外能抑制巨噬细胞脂质氧化介导的低密度脂蛋白氧化并调节氧化巨噬细胞的分泌功能[A];面向21世纪的科技进步与社会经济发展(下册)[C];1999年

5 叶金善;杨丽霞;郭瑞威;;环氧化酶-2/前列腺素E_2在血管紧张素Ⅱ刺激巨噬细胞表达细胞外基质金属蛋白酶诱导因子中的作用[A];第十三次全国心血管病学术会议论文集[C];2011年

6 秦帅;陈希;孔德明;;构建由绿色荧光标记巨噬细胞的转基因斑马鱼系[A];贵州省中西医结合内分泌代谢学术会论文汇编[C];2012年

7 武剑华;徐惠绵;;肿瘤相关巨噬细胞在胃癌中的相关研究[A];第9届全国胃癌学术会议暨第二届阳光长城肿瘤学术会议论文汇编[C];2014年

8 何军;;血凝素样氧化型低密度脂蛋白受体升高巨噬细胞内胆固醇水平[A];中华医学会第11次心血管病学术会议论文摘要集[C];2009年

9 宋盛;周非凡;邢达;;PDT诱导的凋亡细胞对巨噬细胞NO合成的影响[A];第七届全国光生物学学术会议论文摘要集[C];2010年

10 张磊;朱建华;黄元伟;姚航平;;血管紧张素Ⅱ对巨噬细胞(THP-1重细胞)凝集素样氧化低密度脂蛋白受体表达的影响[A];浙江省免疫学会第五次学术研讨会论文汇编[C];2004年

相关重要报纸文章 前10条

1 通讯员 李静 记者 胡德荣;恶性肿瘤巨噬细胞未必皆“恶人”[N];健康报;2014年

2 兰克;以尝试用巨噬细胞治瘫痪[N];科技日报;2000年

3 薛佳;免疫系统——人体的“卫士”[N];保健时报;2009年

4 记者 胡德荣;铁泵蛋白“维稳”铁代谢作用首次阐明[N];健康报;2011年

5 侯嘉 何新乡;硒的神奇功能[N];中国食品质量报;2003年

6 唐颖 倪兵 陈代杰;巨噬细胞泡沫化抑制剂研究快步进行[N];中国医药报;2006年

7 刘元江;新发现解释肿瘤为何易成“漏网之鱼”[N];医药经济报;2007年

8 本报记者 侯嘉 通讯员 何新乡;今天你补硒了吗[N];医药经济报;2003年

9 左志刚;升血小板药使用注意[N];医药养生保健报;2007年

10 记者 许琦敏;“铁泵”蛋白帮助回收铁元素[N];文汇报;2011年

相关博士学位论文 前10条

1 周赤燕;巨噬细胞MsrA对动脉粥样硬化的干预研究[D];武汉大学;2013年

2 章桂忠;TIPE2蛋白调控细胞增殖和炎症的机制研究[D];山东大学;2015年

3 张瑜;DKK1抑制巨噬细胞内脂质沉积及其相关分子机制[D];山东大学;2015年

4 孟涛;异丙酚对心脏收缩功能的抑制作用及其对巨噬细胞分泌功能调节的机制研究[D];山东大学;2015年

5 周兴;基于酵母微囊构建新型口服巨噬细胞靶向递送系统的研究[D];第三军医大学;2015年

6 蒋兴伟;Tim-3对巨噬细胞极化的调控机制研究[D];中国人民解放军军事医学科学院;2015年

7 刘伯玉;清道夫受体A介导小鼠巨噬细胞吞噬钩端螺旋体研究[D];上海交通大学;2013年

8 杨绍俊;miRNA-155介导ESAT-6诱导巨噬细胞凋亡的分子机制及其在结核诊断中的作用[D];第三军医大学;2015年

9 翟光耀;单核/巨噬细胞Ly6C~(low)亚群在心肌梗死后瘢痕形成期的抗炎特性研究[D];北京协和医学院;2014年

10 韩露;TRB3介导的脂肪组织巨噬细胞极化与糖尿病冠状动脉病变关系的研究[D];山东大学;2015年

相关硕士学位论文 前10条

1 马春梅;AP0E~(-/-)小鼠TLR9介导巨噬细胞极化效应对动脉粥样硬化作用的研究[D];福建医科大学;2015年

2 张译丹;盐皮质激素受体拮抗剂调控巨噬细胞表型对实验性矽肺的作用[D];河北医科大学;2015年

3 卢文冉;HCV core蛋白作用的巨噬细胞培养上清对肝细胞生物学性状的影响[D];河北医科大学;2015年

4 李文建;载脂蛋白E影响巨噬细胞因子表达及分型的机制研究[D];河北医科大学;2015年

5 曹爽;高糖对巨噬细胞TLR4信号转导的调节作用[D];河北医科大学;2015年

6 宁程程;肿瘤相关巨噬细胞在子宫内膜癌雌激素敏感性中的作用及机制研究[D];复旦大学;2014年

7 高龙;PLD4在肿瘤相关巨噬细胞抑制结肠癌增殖中的作用研究[D];成都医学院;2015年

8 任虹;感染期子宫颈癌U14细胞荷瘤小鼠抑制巨噬细胞CCL5分泌的机制研究[D];河北医科大学;2015年

9 李美玲;双酚A对小鼠腹腔巨噬细胞极化影响的体外研究[D];安徽医科大学;2015年

10 刘琼;黄芪多糖影响巨噬细胞向脂肪细胞趋化的作用及机制研究[D];新乡医学院;2015年



本文编号:2120426

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/waikelunwen/2120426.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6af03***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com