当前位置:主页 > 医学论文 > 外科论文 >

髋臼后壁后柱新型解剖锁定钢板的研发及有限元分析

发布时间:2018-09-09 12:26
【摘要】:目的:1、建立男、女髋臼后壁后柱表面“点云”数据库,研发出固定不同类型髋臼后壁后柱骨折的新型解剖锁定钢板。2、构建新型钢板、双钢板以及单钢板+弹簧钢板固定累及髋臼后柱伴后壁骨折的模型,并运用有限元分析法(Finite Element Method,FEM)进行分析,比较三种固定方式的稳定性。方法:1、建立髋臼后壁后柱表面“点云”数据库收集200例正常成人骨盆CT数据,男、女各100例,男性平均年龄为48.5岁,女性平均年龄为50.8岁,排除骨盆髋臼骨折、肿瘤等病变。将以上骨盆CT数据导入Mimics17.0软件进行三维重建,分别测量男、女髋臼缘最高点A至髋臼缘最低点B的弧长AB值,分别将AB值按升序排列选取第50位骨盆标本作为男、女标准骨盆,将其转换为点云文件,即获得髋臼后壁后柱区域的“点云”数据库。2、髋臼后壁后柱新型钢板的设计将髋臼后壁后柱表面“点云”文件导入Geomagic Studio 13软件进行三角面片网格重建,然后对获得的标准骨盆模型进行优化、光顺处理,以STL格式保存后导入至Imageware13.0软件进行钢板底面设计。根据临床髋臼后壁后柱骨折的类型,将新型钢板设计为高位型、非高位型。高位型钢板主要用于固定髋臼后壁后上部骨折,由三部分组成:(1)髋臼后上部分:位于髋臼负重区。(2)髋臼后部:钢板覆盖后部大部分区域。(3)坐骨部分:起始于髋臼下缘与坐骨体交界的扭转处,钢板向坐骨体后表面延伸。非高位型钢板主要用于固定位于后部的髋臼后壁骨折,包含三个部分:(1)髂骨部分,始于髋臼后壁近端的髂骨,位于臀上血管神经束的外侧。(2)髋臼后部和(3)坐骨部分与高位型一致。根据上述要求,应用imageware13.0软件在髋臼后壁后柱表面分别绘制出两种钢板底面,调节控制点使钢板底面与骨面形态相服帖。随后将钢板底面以igs格式导入ug9.0软件中,拉厚钢板底面,并对其添加圆边、圆角以及预弯槽等特征。依次在钢板的三个部分添加螺孔:(1)在高位型钢板的后上部分和非高位型钢板的髂骨部分添加椭圆形普通螺钉孔;(2)在钢板髋臼后部的外侧1/3添加圆形锁定螺钉孔,螺钉孔方向避开髋关节腔,且各孔方向延长线不交叉;内侧2/3添加椭圆形普通螺钉孔;(3)在钢板坐骨部分添加椭圆形普通螺钉孔。所有的椭圆形普通螺孔方向与钢板平面垂直。3、钢板有限元分析我们将标准骨盆模型导入geomagicstudio13软件建立有限元分析模型,转化为nurbs封闭曲面骨盆模型,以igs格式文件保存后导入solidworks2016软件,分别人为制造累及髋臼高位和非高位的后柱伴后壁骨折模型,同时构建出双钢板模型和单钢板+弹簧钢板模型,以igs格式导入solidworks2016软件中,按照三种钢板相应的内固定方式分别装配在两种骨折模型上得到新型钢板固定模型、双钢板固定模型以及单钢板+弹簧钢板固定模型。运用hypermesh12.0软件将获得的六种固定模型进行网格划分,然后以inp格式文件保存后导入abaqus6.14软件,分别对钢板、螺钉及骨盆进行赋值,螺钉与骨质之间设为绑定连接关系,作以下静力分析:(1)垂直方向静力分析:固定双侧髋臼窝,限制6个自由度的活动,分别在六种髋臼骨折固定模型的骶1椎体上表面施加500n上下方向垂直载荷;(2)前后方向静力分析:约束骶骨后部,限制6个自由度的活动,分别在六种髋臼骨折固定模型的耻骨联合前表面上施加500n前后方向载荷;(3)侧方静力分析:固定右侧髋臼窝,限制6个自由度的活动,分别在六种髋臼骨折固定模型的左侧髂骨外板表面施加500n水平方向载荷。分析不同内固定方式在三种载荷加载情况下的vonmises应力分布和位移分布。结果:1、通过对200例正常成人骨盆标本测量后,我们得到髋臼缘最高点a至髋臼缘最低点b的弧长ab值男性为(82.00±5.62)mm,女性为(73.77±5.07)mm,其差异具有统计学意义(p0.05)。我们将ab值按升序排列后得到第50位髋臼ab弧长分别为82.06mm(男)、73.50mm(女),以此作为男、女标准髋臼并保存为点云文件,即获得髋臼后壁后柱表面的“点云”数据库。2、将男、女标准骨盆的点云文件导入geomagicstudio13软件进行三角面片网格重建,然后利用imageware13.0软件在骨盆表面相应位置虚拟出钢板形态,通过调节控制点使钢板底面与骨面形态相服帖,将钢板底面导入ug9.0软件拉厚至2.5mm,并添加0.3mm圆边、2mm圆角以及预弯槽等特征。高位型钢板由三部分组成:(1)髋臼后上部分:位于髋臼负重区,钢板顶端距离髂前下棘2.0cm,边缘距离髋臼外侧缘0.6cm,钢板长约2.0cm,宽度为1.0cm,添加有长径为6mm,短径为4mm的椭圆形普通螺钉孔2-3枚。(2)髋臼后部:钢板边缘距髋臼外侧缘0.6cm,男性钢板最大宽度为3.0cm,女性钢板最大宽度为2.5cm。外侧1/3部分添加有直径为2.7mm的圆形锁定螺钉孔5-6枚,内侧2/3部分添加有长径为6mm,短径为4mm的椭圆形普通螺钉孔7-11枚。(3)坐骨部分:钢板长约2.0cm,宽度为1.0cm,添加有长径为6mm,短径为4mm的椭圆形普通螺钉孔2枚。非高位型钢板包含三个部分:(1)髂骨部分,钢板长约2.0cm,宽度为1.0cm,添加有长径为6mm,短径为4mm的椭圆形普通螺钉孔2-3枚。(2)髋臼后部和(3)坐骨部分与高位型一致。所有的椭圆形普通螺孔方向与钢板平面垂直,所有的圆形锁定螺钉孔方向避开髋关节腔,且各孔方向延长线不交叉。3、成功构建六种固定髋臼后壁后柱骨折的有限元分析模型。髋臼高位骨折模型后柱骨折线接近于坐骨大切迹水平,后壁骨折块靠近髋臼后上方,近端骨折块最大上下径为6.5mm,最大内外径为14mm,远端骨折块最大上下径为18mm,最大内外径为12mm,骨折端分离0.5mm;髋臼非高位骨折模型后柱骨折线接近于髋臼后柱中部,后壁骨折块靠近髋臼后壁后方,近端骨折块最大上下径为6.4mm,最大内外径为14mm,远端骨折块最大上下径为19mm,最大内外径为12mm,骨折端分离0.5mm。两种骨折模型均在耻骨下支中部离端,骨折端分离0.5mm。垂直方向静力分析:(1)三种髋臼高位骨折固定模型:新型钢板、双钢板以及单钢板+弹簧钢板的最大位移分别为0.16mm、0.12mm、0.17mm,最大位移均位于左侧髂嵴处。骨盆受到的最大应力分别为24mpa、15mpa、31mpa;钢板受到的最大应力分别为48mpa、127mpa、38mpa。(2)三种髋臼非高位骨折固定模型:新型钢板、双钢板以及单钢板+弹簧钢板的最大位移分别为0.17mm、0.15mm、0.18mm,最大位移均位于左侧髂嵴处。骨盆受到的最大应力分别为26mpa、34mpa、39mpa;钢板受到的最大应力分别为37mpa、213mpa、113mpa。前后方向静力分析:(1)三种髋臼高位骨折固定模型:新型钢板、双钢板以及单钢板+弹簧钢板的最大位移分别为0.19mm、0.21mm、0.19mm,最大位移均位于左侧耻骨下支骨折处。骨盆受到的最大应力分别为45mpa、72mpa、23mpa;钢板受到的最大应力分别为5.9mpa、9mpa、9.8mpa。(2)三种髋臼非高位骨折固定模型:新型钢板、双钢板以及单钢板+弹簧钢板的最大位移分别为0.19mm、0.22mm、0.24mm,最大位移均位于左侧耻骨下支骨折处。骨盆受到的最大应力分别为46mpa、72mpa、79mpa;钢板受到的最大应力分别为8.9mpa、18mpa、9.5mpa。侧方静力分析:(1)三种髋臼高位骨折固定模型:新型钢板、双钢板以及单钢板+弹簧钢板的最大位移分别为2.30mm、4.59mm、4.85mm,最大位移均位于右侧髂嵴处。骨盆受到的最大应力分别为168MPa、330MPa、272MPa;钢板受到的最大应力分别为268MPa、683MPa、782MPa。(2)三种髋臼非高位骨折固定模型:新型钢板、双钢板以及单钢板+弹簧钢板的最大位移分别为2.04mm、2.90mm、5.60mm,最大位移均位于右侧髂嵴处。骨盆受到的最大应力分别为108MPa、196MPa、269MPa;钢板受到的最大应力分别为334MPa、649MPa、698MPa。结论:1、根据髋臼后壁后柱表面解剖特点成功设计出与之相服帖的不同性别的两种新型解剖锁定钢板。2、新型钢板分为一体两翼,钢板上的螺孔为椭圆形普通孔与圆形锁定孔,椭圆形普通孔位于钢板的两翼和体部的内侧2/3,便于术中根据骨折线调整螺钉方向;圆形锁定孔位于体部的外侧1/3,可固定髋臼后壁的小骨折块。相对于双钢板、单钢板+弹簧钢板固定,新型钢板覆盖范围更广泛,应力分布更均匀。
[Abstract]:Objective: 1. To establish a "point cloud" database of the posterior column surface of acetabulum for both men and women, and to develop a new type of anatomical locking plate for fixation of different types of posterior column fractures of acetabulum. Methods: 1. Set up the "point cloud" database of the posterior column surface of acetabulum to collect the CT data of 200 normal adults, 100 males and 100 females, the average age of males is 48.5 years, the average age of females is 50.8 years, excluding the pelvic acetabular fracture, tumor and other lesions. Mimics 17.0 software was imported to carry out three-dimensional reconstruction, and the AB values of the highest point A of the acetabular margin and the lowest point B of the acetabular margin of the male and female were measured respectively. The 50th pelvic specimens were selected as male and female standard pelvis according to ascending order of AB values. They were converted into point cloud files, that is, the "point cloud" database of the posterior column of the acetabular wall was obtained. The design of the new steel plate for the posterior column of the acetabulum introduces the "point cloud" file into Geomagic Studio 13 software for triangular mesh reconstruction, then optimizes the obtained standard pelvic model, smoothes it, saves it in STL format and imports it into Imageware 13.0 software for the design of the steel plate bottom. According to the clinical acetabulum posterior column, the steel plate is designed. The high plate is mainly used to fix the posterior and upper part of the acetabulum. It consists of three parts: (1) the posterior and upper part of the acetabulum is located in the acetabulum load-bearing area. (2) the posterior part of the acetabulum: the plate covers most of the posterior area. (3) the ischial part: the torsion that begins at the junction of the lower acetabulum and the ischium. The non-high plate is mainly used to fix the posterior acetabular wall fractures located at the posterior part of the acetabulum. It consists of three parts: (1) the iliac part, which begins at the proximal end of the posterior wall of the acetabulum, is located at the lateral of the superior gluteal vascular nerve bundle. (2) the posterior acetabulum and (3) the sciatic part are consistent with the high type. Ware13.0 software draws two kinds of steel plate bottoms on the surface of the posterior column of the acetabular posterior wall, and adjusts the control points to make the steel plate bottoms conform to the shape of the bone surface. (1) Ordinary elliptical screw holes were added to the upper and posterior parts of the high profile plate and the iliac part of the non-high profile plate; (2) Round locking screw holes were added to the lateral part of the posterior acetabulum of the plate, the direction of the screw holes avoided the hip joint cavity, and the lengthening lines of the holes were not intersected; the medial part 2/3 added elliptical ordinary screw holes; (3) Sciatic part of the plate was added to the plate. All the elliptical common screw holes are perpendicular to the plane of the plate. 3. Finite element analysis of the plate. We imported the standard pelvic model into the Geomagic studio 13 software to establish the finite element analysis model, transformed it into a NURBS closed-form pelvic model, saved in IGS format file and imported SolidWorks 2016 software, respectively. In order to make a model of posterior column fracture with posterior wall involving high and non-high acetabulum, a double-plate model and a single-plate plus spring-plate model were constructed. The SolidWorks 2016 software was imported in IGS format, and a new type of plate fixation model was established according to the corresponding internal fixation methods of three plates. The six fixed models were meshed by HyperMesh 12.0 software, and then were saved in InP format file and imported into ABAQUS 6.14 software. The plate, screw and pelvis were assigned, and the relationship between screw and bone was set as binding connection. The static analysis was as follows: (1) Vertical. Directional static analysis: Fixation of bilateral acetabular fossa, restriction of six degrees of freedom of movement, respectively in the six acetabular fracture fixation model of the upper surface of the sacral 1 vertebral body applied 500 N vertical load; (2) Anterior and posterior static analysis: constraints on the posterior sacrum, restriction of six degrees of freedom of movement, respectively in the six acetabular fracture fixation model of the pubic symphysis before. (3) Lateral static analysis: Fixation of the right acetabular fossa, restriction of six degrees of freedom, and application of 500 N horizontal loads on the surface of the left iliac outer plate of six kinds of acetabular fracture fixation models. Results: 1. After measuring 200 normal adult pelvic specimens, we found that the a b value of the highest point of acetabular margin a to the lowest point of acetabular margin B was (82.00.62) mm in males and (73.77.07) mm in females. The difference was statistically significant (p0.05). 73.50mm (female) as the male and female standard acetabulum and saved as a point cloud file, that is, the "point cloud" database of the posterior column surface of the acetabulum was obtained. 2. The point cloud files of the male and female standard pelvis were imported into Geomagic studio 13 software to reconstruct the triangular patch mesh, and then the plate was dummied out at the corresponding position on the pelvic surface by using Imageware 13.0 software. The bottom of the plate was drawn to 2.5mm by ug9.0 software, and 0.3mm round edge, 2mm Round Corner and pre-bending groove were added. The high profile plate consists of three parts: (1) the upper part of the acetabulum is located in the acetabular load-bearing area, the top of the plate is 2.0cm away from the anterior inferior iliac spine, and the edge is 2.0cm away from the acetabulum. The lateral margin of acetabulum was 0.6 cm, the steel plate was 2.0 cm in length and 1.0 cm in width. There were 2-3 oval common screw holes with 6 mm in length and 4 mm in short diameter. (3) Sciatic part: plate length is about 2.0 cm, width is 1.0 cm, add 2 oval common screw holes with 6 mm in length and 4 mm in diameter. Non-high plate contains three parts: (1) iliac part, plate length is about 2.0 cm, width is 1.0 cm, add 2 oval common screw holes with 6 mm in length and 4 mm in diameter. (2) The posterior part of the acetabulum and (3) the ischium are consistent with the high position type. All the oval common screw holes are perpendicular to the plate plane. All the circular locking screw holes avoid the acetabular joint cavity and the lengthening lines of each hole are not intersected. 3. Six kinds of fixed acetabulum posterior wall were successfully constructed. The fracture line of the posterior column of the high acetabular fracture model is close to the level of the great sciatic notch. The posterior wall of the fracture block is close to the top of the posterior acetabulum. The maximum upper and lower diameters of the proximal fracture block are 6.5 mm, the maximum internal and external diameters are 14 mm, the maximum upper and lower diameters of the distal fracture block are 18 mm, the maximum internal and external diameters are 12 mm, and the fracture ends are separated by 0.5 mm. The fracture line of the posterior column of the high fracture model is close to the middle of the posterior column of the acetabulum. The posterior wall fracture block is close to the posterior wall of the acetabulum. The maximum upper and lower diameters of the proximal fracture block are 6.4 mm, the maximum internal and external diameters are 14 mm, the maximum upper and lower diameters of the distal fracture block are 19 mm, the maximum internal and external diameters are 12 mm, and the fracture ends are separated by 0.5 mm. Vertical static analysis of fracture end separation 0.5 mm: (1) The maximum displacement of three high acetabular fracture fixation models were 0.16 mm, 0.12 mm, 0.17 mm, respectively. The maximum stress of pelvis was 24 mpa, 15 mpa, 31 mpa, and the maximum stress of plate was 0.16 mm, 0.12 mm, and 0.17 mm, respectively. The maximum displacement of the new plate, double plate and single plate plus spring plate were 0.17 mm, 0.15 mm and 0.18 mm respectively. the maximum displacement was located at the left iliac crest. Mpa, 113mpa. Anterior and posterior static analysis: (1) Three high acetabular fracture fixation models: new plate, double plate and single plate + spring plate, the maximum displacement were 0.19 mm, 0.21 mm, 0.19 mm, respectively. The maximum displacement was located at the left inferior pubic branch fracture. The maximum stress of pelvis was 45 mpa, 72 mpa, 23 mpa, and the maximum displacement of plate was 0.19 mm, 0.21 mm, 0.19 mm, respectively. (2) The maximum displacements of the new plate, double plate and single plate plus spring plate were 0.19 mm, 0.22 mm and 0.24 mm respectively. The maximum displacements were located at the fracture site of the left inferior pubic branch. The lateral static analysis was 8.9 mpa, 18 mpa, and 9.5 mpa, respectively. (1) The maximum displacements of three high acetabular fracture fixation models were 2.30 mm, 4.59 mm, 4.85 mm, respectively. The maximum stresses on the pelvis were 168 MPa, 330 MPa, 272 MPa, and the maximum displacements on the plate were 2.30 mm, 4.59 mm, 4.85 mm, respectively. The stress was 268 MPa, 683 MPa and 782 MPa. (2) The maximum displacement of the new plate, double plate and single plate plus spring plate were 2.04 mm, 2.90 mm and 5.60 mm respectively, and the maximum displacement was located at the right iliac crest. Conclusion: 1. According to the anatomical characteristics of the posterior column of the acetabular posterior wall, two new anatomical locking plates of different genders were successfully designed. 2. The new plate was divided into one body and two wings. The screw holes on the plate were oval ordinary holes and circular locking holes. The oval ordinary holes were located on the wings and body parts of the plate. Medial 2/3, easy to adjust the direction of the screw according to the fracture line during the operation; circular locking hole is located in the lateral part of the body 1/3, can fix acetabular posterior wall of small fractures. Compared with double plates, single plate + spring plate fixation, the new plate coverage is wider, stress distribution is more uniform.
【学位授予单位】:重庆医科大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R687.3

【相似文献】

相关期刊论文 前10条

1 张海林;姜雪峰;孙惠清;倪卓民;徐军;王亚斌;;解剖锁定钢板治疗粉碎性尺骨鹰嘴骨折的近期疗效[J];江苏医药;2013年08期

2 王文艳;刘敏波;陈智能;王龙剑;黄志宏;叶俊才;范明君;徐小生;;解剖锁定钢板治疗老年股骨转子部骨折[J];中医正骨;2009年02期

3 吴明义;崔勇;詹开喜;;解剖锁定钢板+固骼生治疗老年人肱骨近端粉碎性骨折的疗效分析[J];现代实用医学;2010年07期

4 周曼瑜;周荣博;周浩;;解剖锁定钢板治疗老年股骨转子部骨折临床观察[J];中国社区医师(医学专业);2012年14期

5 姜福龙;姜海林;姜雪;;解剖锁定钢板治疗桡骨远端粉碎性骨折[J];临床骨科杂志;2014年01期

6 曾志利;;解剖锁定钢板治疗肱骨外科颈粉碎性骨折的疗效观察[J];工企医刊;2014年02期

7 孙涛;;解剖锁定钢板内固定治疗高龄股骨粗隆间粉碎骨折42例[J];大家健康(学术版);2014年01期

8 吕俊生;李军;裴介成;张为亚;秦立友;;股骨近端防旋髓内钉和解剖锁定钢板治疗老年股骨转子间骨折的疗效分析[J];泰山医学院学报;2013年11期

9 罗江;郭帮富;雷春;刘庆思;;解剖锁定钢板内固定治疗高龄股骨粗隆间粉碎骨折42例[J];中国中医骨伤科杂志;2011年08期

10 姜德红;肖东民;陆健;魏伟生;蒋石德;;股骨近端解剖锁定钢板治疗老年股骨粗隆间骨折的临床效果观察[J];中国医学创新;2011年20期

相关会议论文 前2条

1 马志芳;;解剖锁定钢板治疗老年股骨粗隆骨折64例分析[A];2009第十七届全国中西医结合骨伤科学术研讨会论文汇编[C];2009年

2 章年年;朱仰义;;解剖锁定钢板治疗锁骨骨折54例临床分析[A];浙江省医学会骨科学分会30年庆典暨2011年浙江省骨科学学术年会论文汇编[C];2011年

相关硕士学位论文 前6条

1 李丙法;解剖锁定钢板治疗Ⅲ型Pilon骨折的临床疗效观察[D];新疆医科大学;2016年

2 周坚锋;新型解剖锁定钢板固定髋臼T型骨折的有限元分析[D];中国人民解放军医学院;2016年

3 许猛;髋臼骨折解剖锁定钢板的研发及临床应用[D];中国人民解放军军医进修学院;2010年

4 肖群;解剖锁定钢板与DHS治疗股骨转子间骨折的疗效分析[D];大连医科大学;2011年

5 刘春生;新型解剖锁定钢板在髋臼骨折内固定中的生物力学研究[D];中国人民解放军医学院;2012年

6 卢志军;DHS和解剖锁定钢板治疗股骨粗隆间骨折的临床及生物力学研究[D];汕头大学;2011年



本文编号:2232370

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/waikelunwen/2232370.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8fb82***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com