应用两种不同材质融合器行腰椎椎间融合的三维有限元分析
[Abstract]:Background: the development of spinal biomechanics is changing with each passing day, especially in recent years, various new techniques and methods have been developed, pedicle screw fixation and interbody fusion cage (cage) are becoming more and more popular in clinical practice. So that the spinal segment can be stabilized immediately after extensive bone decompression, and through bone grafting to achieve long-term fusion to maintain its normal function. Cage has its own unique advantages, not only increased the fusion rate of vertebral body, reduced the use of bone graft. It can also restore the existing height of intervertebral space, accelerate the fusion rate, and reduce the operation time. Now it has developed into one of the basic techniques of spinal surgery. However, with the increase of the amount of fusion device, there are some examples of fusion failure, such as cage displacement, subsidence and so on. In view of the above failure examples, we have done a lot of experiments and tests on the biomechanical properties of pedicle screw combined with cage [1]. For the pedicle screw experiment, we mainly focus on the analysis of the device anti-fatigue, screw pull-out force and screw force. For interbody fusion cage, the tensile resistance, shear resistance and stability were tested and analyzed. Finite element method can well predict the biomechanical characteristics of screw fixation and cage. It has been widely used in the design and analysis of pedicle screw and fusion cage. Objective: to study the biomechanical characteristics of pedicle screw fixation combined with two different materials cage in L4 / 5 intervertebral fusion by means of finite element analysis (FEM). Methods: a healthy woman who volunteered to participate in the experiment was selected, and the normal spinal L4~L5 segment information was obtained by spiral CT scanning. The scanning images were reconstructed by Mimics and Geomagic software. The three-dimensional model is introduced into the finite element software ANSYS15.0, and then the (INT). Of the L4 / 5 segment 3D finite element model is formed. On the established INT, the model of bilateral pedicle screw combined with two different materials cage was established respectively. The model was Ti (Ti) cage,Mod2 and PEEK (polyether ether ketone) cage.. 500 N preload and 8 N m additional force were added to the two stereoscopic models respectively. After the pre-load and motion additional force of the three-dimensional model were set up, the lumbar vertebrae flexion, extension, left bending, right side bending and left rotation were set. The angular displacement of L4 and 5 segments and the force of bilateral pedicle screws and two different fusion cages were calculated under six right lateral motion conditions. Results the angular displacement of 1: 1 Mod2 was smaller than that of normal under 6 kinds of motion conditions. The maximum stress of Mod1 in stress test is higher than that of Mod2. in 6 kinds of motion conditions. The maximum stress of M 1 and M 2 pedicle screws and cage was smaller than that of other movements. Conclusion: for segments requiring fusion, the pedicle screw system can ensure sufficient strength. The maximum cage stress of peek material is smaller than that of Ti material under the same stable condition. Therefore, the probability of cage finding displacement and settlement of peek material is lower than that of Ti material cage, and the intervertebral fusion rate is also higher. In the experiment, we can find that the stress of the fusion device is small under the condition of the extension motion, so it can be deduced that the stable position of the fusion device is the extension position under the condition of motion.
【学位授予单位】:青海大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R687.3
【相似文献】
相关期刊论文 前10条
1 王建华;夏虹;尹庆水;吴增晖;李树林;王善琛;;可注射人工骨融合器的研制及其在微创融合手术中的初步应用[J];临床骨科杂志;2011年04期
2 郭萍;熊平;;电磁场细胞融合器的研制[J];医学物理;1991年03期
3 李继友;李开南;;生物降解可吸收椎体间融合器的研究进展[J];中国脊柱脊髓杂志;2009年02期
4 齐保闯;唐辉;范新宇;张美超;朱跃良;李川;徐永清;;四角融合器改良前、后有限元分析对比研究[J];中国临床解剖学杂志;2012年04期
5 庄苏阳,吴小涛,茅祖斌,洪鑫,王以进;颈椎前路椎体间微创融合器的生物力学实验研究[J];医用生物力学;2005年03期
6 张亚峰;杨惠林;唐天驷;史勇;;后路椎体间融合术后融合器脱出的原因及其翻修术[J];中国脊柱脊髓杂志;2006年12期
7 张蓓;龚晓;;应用新型腰椎融合器行腰椎间融合术的护理20例[J];中国实用护理杂志;2006年15期
8 张桦;叶晓健;王长峰;胡玉华;李家顺;;单侧关节突关节切除对腰椎间融合器长期融合效果的影响[J];中国组织工程研究与临床康复;2009年13期
9 陈剑;王赏利;何登伟;;青壮年患者腰椎融合器植入术后感染的临床分析[J];中华医院感染学杂志;2013年21期
10 张亚峰,杨惠林,唐天驷,史勇;表面钛涂层融合器应用于腰椎不稳症的初步报告[J];苏州大学学报(医学版);2004年04期
相关会议论文 前10条
1 何磊;范顺武;;与融合器相关的腰椎翻修术[A];2006年浙江省骨科学术会议暨浙江省脊柱脊髓学术会议论文汇编[C];2006年
2 赵凤东;杨伟;范顺武;;腰椎TLIF术后融合器移位及其危险因素分析[A];2012年浙江省骨科学术年会论文集[C];2012年
3 黄永玲;;TC4钛合金脊柱融合器的应用研究[A];2000年材料科学与工程新进展(上)——2000年中国材料研讨会论文集[C];2000年
4 黄阳亮;刘少喻;梁春祥;李浩淼;于滨生;龙厚清;韩国伟;张旭华;魏富鑫;;Solis融合器治疗Ⅱ型及Ⅱa型Hangman骨折——附17例报告[A];第三届全国脊髓损伤治疗与康复研讨会论文集[C];2012年
5 张志武;李玢;许文根;;应用ROI-C融合器治疗颈椎病[A];2013中国工程院科技论坛暨浙江省骨科学学术年会论文摘要集[C];2013年
6 杨立利;顾一飞;高瑞;袁文;;新型零切迹颈前路融合器治疗多节段颈椎病早期疗效研究[A];第十九届全国中西医结合骨伤科学术研讨会论文汇编[C];2012年
7 施培华;方向前;俞杭平;;颈椎钢板融合器一体化系统(PCB)的临床应用[A];2004年浙江省骨科学术会议论文汇编[C];2004年
8 何永清;张蒲;李华;谢幼专;;PEEK椎体间融合器在颈椎融合中的应用(临床研究)[A];2009年浙江省骨科学学术年会论文汇编[C];2009年
9 孙元;姜延洲;王珍君;江霞;;JR型脊柱融合器(胸腰椎)的研制与临床应用[A];中国康复医学会第四届会员代表大会暨第三届中国康复医学学术大会论文汇编[C];2001年
10 李晓林;朱丹杰;金永明;杨迪;陈锦平;;一体化钢板融合器PCB在颈椎前路的临床应用[A];2009年浙江省骨科学学术年会论文汇编[C];2009年
相关重要报纸文章 前1条
1 曾理;腰椎间微创切口植入伞状融合器[N];中国医药报;2005年
相关博士学位论文 前5条
1 王修文;利用融合器进行骶髂关节融合的研究[D];山东大学;2010年
2 李轶;PCL-TCP颈椎椎间融合器设计制备及动物体内研究[D];第四军医大学;2014年
3 刘恩志;撑开型融合器治疗腰椎疾患长期随访及疗效评价[D];南方医科大学;2014年
4 王甲甲;人体颈椎有限元建模及仿生颈椎椎间融合器研究[D];吉林大学;2014年
5 刘枫;绵羊腰椎植入PA66/n-HA融合器后的初始稳定性研究[D];北京协和医学院;2010年
相关硕士学位论文 前10条
1 魏友华;生物降解腰椎小关节融合器的设计特征及生物力学实验研究[D];遵义医学院;2015年
2 张书豪;椎体终板形状对融合器表面的数学要求[D];郑州大学;2015年
3 汪涛;成骨化羊ADSCs复合表面改性融合器构建组织工程化骨的研究[D];天津医科大学;2015年
4 邓乾兴;经椎间孔单节段腰椎椎间融合术后融合器下沉的危险因素及疗效分析[D];重庆医科大学;2016年
5 郭鑫;应用两种不同材质融合器行腰椎椎间融合的三维有限元分析[D];青海大学;2017年
6 洪鑫;后路腰椎椎体间微创融合器的研制及动物实验研究[D];东南大学;2004年
7 何海军;三种腰椎椎间融合器后路应用的比较研究[D];东南大学;2006年
8 张山;可生物降解腰椎横突间融合器降解过程中生物力学和影像学的初步研究[D];遵义医学院;2011年
9 李鹏;可生物降解腰椎横突间融合器山羊体内降解的实验研究[D];遵义医学院;2012年
10 张晔;计算机辅助设计腰椎椎间融合器的生物力学研究[D];第二军医大学;2007年
,本文编号:2241446
本文链接:https://www.wllwen.com/yixuelunwen/waikelunwen/2241446.html