当前位置:主页 > 医学论文 > 外科论文 >

颈椎前路减压研磨过程声压信号的分析—体外研究

发布时间:2018-12-20 12:46
【摘要】:背景和目的脊髓型颈椎病(cervical spondylotic myelopathy,CSM),是临床上一种非常常见的退行性疾病。对于神经功能实质性损伤,或保守治疗无效的患者,手术治疗往往能取得不错的效果。前路颈椎椎间盘切除融合术(anterior cervical discectomy and fusion,ACDF)已被证实是一种治疗脊髓型颈椎病被广泛接受的手术方法。在手术中,为了维持椎间高度,避免移植物沉陷,安全减压以及置钉牢固,对术者处理终板下皮质骨、后纵韧带以及置钉操作的要求极高。而手术机器人将会作为一个很理想的助手来辅助术者完成这些高难度操作。近些年,已经有一些手术机器人被引入到脊柱手术中。但是他们主要是依赖于机械刚度、力反馈和视觉反馈。除了上述两种反馈,声压信号也被认为是一种有效的反馈。然而,关于颈椎前路手术研磨过程中的声压信号的分析却未见文献报道。本研究目的是收集在体外牛颈椎各种组织上用高速磨钻进行研磨过程中产生的声压信号,并对其中纤维环、终板下皮质骨、椎体松质骨和后纵韧带的声压信号进行分析,区别其不同。方法实验总共选用了8只牛(9周)的颈椎,全部标本节段包括C3~C7的全部部分。排除标准:(1)存在骨折或病理性创伤;(2)椎体连接处、钩椎关节或关节突关节处有过渡性骨赘增生;(3)韧带有肥大增生、钙化或骨化等情况。在每个标本上随机使用其中的一个节段,并在其中选择完好的纤维环、终板下皮质骨、椎体松质骨和后纵韧带当做实验对象。按照组织的不同进行分组。共分为四组,A组:纤维环,B组:终板下皮质骨,C组:椎体松质骨,D组:后纵韧带。实验标本冷冻保存,在实验当天解冻处于室温。对牛颈椎进行简单手术处理,完整暴露要测试的组织。安装测试声压信号装置,将高速磨钻设置为60000转/分,声音信号的采样频率(frequency of sampling,FS)设定在50000赫兹。对纤维环、终板下皮质骨、椎体松质骨和后纵韧带分别进行研磨。由实验麦克风收集研磨过程中产生的声压信号并传输给动态信号采集模块。采用MATLAB 8.4软件使用小波包变换(wavelet packet transform,WPT)软件包对采样信号进行小波包变换,获得树形结构的小波包系数,选择信息代价函数,利用最佳小波包基选取算法选取最佳基。对最佳正交小波包基对应的小波包系数进行处理。对处理后的小波包系数采用小波包重构算法得到重构信号。进而获得四种组织的声压频谱。采用SPSS 22.0 for windows统计软件对声压信号数据进行统计学分析,对在相同频率下的样本均数进行多组独立样本秩和检验(Kruskal-Wallis Test)。结果1、声压信号频谱图显示,每一种研磨的状态在不同频率上都有强度的不同,彼此之间存在差异。以1000Hz、2000Hz、3000Hz、4000Hz和5000Hz这五个频率上的强度变化最为明显。纤维环、终板下皮质骨、椎体松质骨和后纵韧带四组声压信号之间总体差异有统计学意义(p0.05)。2、纤维环和终板下皮质骨的声压信号数据在1000Hz,2000Hz,3000Hz和5000Hz 4种频率下差异有统计学意义(p0.05),在4000Hz频率下差异无统计学意义(p0.05)。纤维环和后纵韧带的声压信号数据在2000Hz、3000Hz、4000Hz和5000Hz 4种频率下,差异有统计学意义(p0.05),在1000Hz频率下差异无统计学意义(p0.05)。终板下皮质骨与椎体松质骨的声压信号数据在1000Hz、2000Hz、3000Hz和4000Hz 4种频率下,差异有统计学意义(p0.05),在5000Hz频率下差异无统计学意义(p0.05)。结论1、手术中使用高速磨钻研磨纤维环、终板下皮质骨、椎体松质骨和后纵韧带所产生的声压信号有显著的区别。2、高速磨钻研磨过程中产生的声压信号在前路颈椎椎间盘切除融合术中作为一种信号反馈是很有希望的。
[Abstract]:Background and objective cervical spondylotic myelopathy (CSM) is a very common degenerative disease. Surgical treatment often results in a good effect on patients with a substantial impairment of the neurological function or a conservative treatment. Anterior cervical discectomy and fusion (ACDF) has been proved to be a widely accepted surgical method for the treatment of cervical spondylotic myelopathy. In the operation, in order to maintain the inter-vertebral height, the requirements of graft subsidence, safety pressure reduction and anchor fixation are avoided, and the requirements for the operation of the cortical bone, the posterior longitudinal ligament and the nail-placing operation under the treatment of the endplates are extremely high. The surgical robot will be an ideal assistant to assist the surgeon in completing these high-difficulty operations. In recent years, a number of surgical robots have been introduced into the spinal surgery. however, they rely primarily on mechanical stiffness, force feedback, and visual feedback. In addition to the above two feedback, the sound pressure signal is also considered to be an effective feedback. However, the analysis of the sound pressure signal in the process of anterior cervical surgery is not reported in the literature. The purpose of this study was to collect the sound pressure signal produced during grinding with high-speed grinding drill on various tissues of bovine cervical vertebrae in vitro, and to analyze the sound pressure signals of the fiber ring, the lower cortical bone, the cancellous bone of the vertebral body and the posterior longitudinal ligament. Methods A total of 8 cattle (9 weeks) of cervical spine were selected, all of which included all the parts of C3 to C7. Exclusion criteria: (1) There is a fracture or pathological wound; (2) there is a transitional osteophyte in the joint of the vertebral body, the joint of the hook and the joint or the joint of the joint, and (3) the ligament has hypertrophy, calcification or ossification. One of the sections was randomly used on each specimen and the intact fiber ring, the lower cortical bone of the endplates, the cancellous bone of the vertebral body, and the posterior longitudinal ligament were used as experimental subjects. Groups are grouped according to the organization's differences. It was divided into four groups: group A: fiber ring, group B: lower cortical bone of endplates, group C: cancellous bone of vertebral body, D group: posterior longitudinal ligament. The experimental specimens were frozen and stored and thawed at room temperature on the same day of the experiment. Simple surgical treatment of the bovine cervical spine and complete exposure to the tissue to be tested. Install the test sound pressure signal device, set the high-speed drill to 60000 rpm, and the sampling frequency of the sound signal (frequency of sampling, FS) is set at 50,000 Hz. The fiber ring, the lower cortical bone of the endplates, the cancellous bone and the posterior longitudinal ligament of the vertebral body are respectively ground. and the sound pressure signal generated during the grinding process is collected by the experimental microphone and transmitted to the dynamic signal acquisition module. The wavelet packet transform is used to transform the sampled signal by using the wavelet packet transform (WPT) software package, and the wavelet packet coefficient of the tree structure is obtained, the information cost function is selected, and the optimal base is selected by using the optimal wavelet packet base selection algorithm. and the wavelet packet coefficients corresponding to the optimal orthogonal wavelet packet base are processed. and a wavelet packet reconstruction algorithm is adopted for the processed wavelet packet coefficients to obtain a reconstructed signal. and then the sound pressure spectrum of the four tissues is obtained. The statistical analysis of the sound pressure signal data was carried out by using the SPSS 10.0 for windows statistical software, and multiple independent sample rank and test (Kruskal-Wallis Test) were performed on the average number of samples at the same frequency. As a result, the sound pressure signal spectrum diagram shows that the state of each grinding is different in different frequencies, and there is a difference between each other. The intensity changes at the five frequencies of 1000Hz, 2000Hz, 3000Hz, 4000Hz and 5000Hz are the most obvious. There is a significant difference in the overall difference between the four groups of sound pressure signals of the fiber ring, the lower cortical bone of the endplates, the cancellous bone of the vertebral body and the four groups of the posterior longitudinal ligament (p0.05). The data of the sound pressure signal of the cortical bone under the fiber ring and the end plate is statistically significant at the frequencies of 1000Hz, 2000Hz, 3000Hz and 5000Hz (p0.05). There was no significant difference in the frequency of 40000Hz (p0.05). The sound pressure signal data of the fiber ring and the posterior longitudinal ligament had statistical significance (p0.05) at the frequency of 2000Hz, 3000Hz, 40000Hz and 5000Hz (p0.05), and there was no statistical difference at the frequency of 1000Hz (p0.05). The acoustic pressure signal data of the lower cortical bone and the cancellous bone of the vertebral body were statistically significant at the frequency of 1000Hz, 2000Hz, 3000Hz and 4000Hz (p0.05), and there was no statistical significance at the 5000Hz frequency (p0.05). Conclusion 1. There is a significant difference between the sound pressure signal produced by the high-speed grinding and grinding of the fiber ring, the lower cortical bone, the cancellous bone of the vertebral body and the posterior longitudinal ligament in the operation. The sound pressure signal produced during the high-speed grinding and grinding process is very promising as a signal feedback in the anterior cervical discectomy and fusion.
【学位授予单位】:天津医科大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R687.3

【相似文献】

相关期刊论文 前10条

1 杨淑贞;;45.研磨过程中的污染[J];南药译丛;1960年04期

2 何洪波;李康华;胡建中;张宏其;雷光华;王锡阳;;后纵韧带切除与漂浮在颈椎减压术中的疗效比较[J];中国骨与关节损伤杂志;2006年05期

3 刘建波;吕会强;乔永东;王自立;丁惠强;赵浩宁;;后纵韧带切除与保留在脊髓型颈椎病前路减压术中的疗效比较[J];宁夏医学杂志;2010年09期

4 吴伟峰,吴文华,黄奥;推拿导致L_(4,5)后纵韧带下血肿1例[J];中国脊柱脊髓杂志;1993年04期

5 刘丹,吴震东,黄宰宇;颈前路手术后纵韧带切除的临床研究[J];中国矫形外科杂志;2004年17期

6 廖智辉,吕国华;后纵韧带切除在颈椎前路减压中有效性的评价[J];中国医师杂志;2005年07期

7 刘英民;朱志强;奚修全;董继兵;;切除与漂浮后纵韧带在脊髓型颈椎病前路减压术中的疗效对比[J];脊柱外科杂志;2007年01期

8 林建;李静;朱彤;林泓怡;;单纯后纵韧带增生型颈椎病责任间盘的确认及其射频治疗[J];中国疼痛医学杂志;2012年07期

9 严力生;罗旭耀;钱海平;钮心刚;斯清庆;;颈椎后纵韧带切除术的方法改进及其临床意义[J];颈腰痛杂志;2009年03期

10 吴东永;武文杰;黄德征;陈海;谢硕胜;;后纵韧带切除在颈椎前路减压中的疗效分析[J];吉林医学;2012年35期

相关会议论文 前8条

1 陈德玉;王新伟;陈宇;杨立利;郭永飞;何志敏;刘军海;;后纵韧带钩辅助下颈椎后纵韧带骨化物切除减压方法与疗效[A];第八届全国脊柱脊髓损伤学术会议论文汇编[C];2007年

2 陈德玉;陈宇;王新伟;杨立利;郭永飞;何志敏;袁文;;后纵韧带钩辅助下颈椎后纵韧带骨化物切除减压术[A];第八届全国脊柱脊髓损伤学术会议论文汇编[C];2007年

3 刘建波;吕会强;乔永东;王自立;丁惠强;赵浩宁;;后纵韧带切除与保留在脊髓型颈椎病前路减压术中的疗效比较[A];宁夏医学会骨科学分会第六届学术年会资料汇编[C];2011年

4 刘建波;乔永东;王自立;丁惠强;赵浩宁;;后纵韧带切除与保留在单节段脊髓型颈椎病前路减压术中的疗效比较[A];第三届全国脊髓损伤治疗与康复研讨会论文集[C];2012年

5 严力生;罗旭耀;钱海平;钮心刚;斯清庆;;颈椎后纵韧带切除术的方法改进及其临床意义[A];2009年全国骨与关节损伤新技术研讨会暨第六届股骨头缺血性坏死修复与再造学习班论文汇编[C];2009年

6 叶添文;贾连顺;陈德玉;王新伟;叶晓健;倪斌;袁文;;脊髓型颈椎病的后纵韧带病理分型及其临床意义[A];2009“泰山杯”全国骨科青年科技创新论坛暨优秀论文评选论文选集[C];2009年

7 刘建波;吕会强;乔永东;王自立;丁惠强;赵浩宁;;后纵韧带切除与保留在颈椎间盘突出症前路减压术中的疗效比较[A];宁夏医学会骨科分会第七届学术年会论文汇编[C];2012年

8 安兵兵;张东升;;皮质骨各向异性的疲劳裂纹扩展行为研究[A];第九届全国生物力学学术会议论文汇编[C];2009年

相关博士学位论文 前5条

1 陈德纯;颈椎后纵韧带骨化细胞成骨活性及相关分子机制研究[D];第二军医大学;2016年

2 范若寻;老龄相关骨退化对骨宏微观力学性能影响的数值仿真研究[D];吉林大学;2016年

3 杨崇实;皮质骨切开对牙槽骨改建的影响及生物力学分析[D];重庆医科大学;2015年

4 缪锦浩;几丁糖影响后纵韧带成纤维细胞骨化进程的相关研究[D];第二军医大学;2013年

5 谭炳毅;后路手术对于大鼠后纵韧带内骨化因子的影响[D];第二军医大学;2005年

相关硕士学位论文 前10条

1 唐慕尧;颈椎前路减压研磨过程声压信号的分析—体外研究[D];天津医科大学;2017年

2 高明宝;金刚石研磨过程振动信号分析及信号特征识别研究[D];广东工业大学;2011年

3 侯大海;金刚石研磨扰动因素分析与工艺研究[D];广东工业大学;2008年

4 戈振州;矿物质特性对E型中速磨煤机研磨过程的影响研究[D];中国矿业大学;2017年

5 白鹤;颈椎单开门研磨过程中声压信号的差异—动物实验研究[D];天津医科大学;2017年

6 库才高;弹性浮动研磨振动影响因素分析与仿真计算[D];广东工业大学;2013年

7 崔涛;工艺参数对研磨效果影响的理论分析与试验研究[D];吉林大学;2014年

8 杜育海;颈椎前路手术治疗后纵韧带骨化症行后纵韧带切除的疗效评价[D];山东中医药大学;2011年

9 刘建波;后纵韧带切除与保留在脊髓型颈椎病前路减压术中的疗效比较[D];宁夏医科大学;2011年

10 汪伟;后纵韧带切除和保留在脊髓型颈椎病前路减压融合术中的适应症[D];湖北中医药大学;2014年



本文编号:2388020

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/waikelunwen/2388020.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户afd4f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com