当前位置:主页 > 医学论文 > 外科论文 >

前踝撞击征发生机制的生物力学有限元分析

发布时间:2019-01-08 13:07
【摘要】:目的构建符合足踝特点的全足三维有限元模型,并进行应力分析,模拟全足在步态过程中后足踩地过程,以此探究前踝多发撞击的生物力学机制。方法1、对1名男性志愿者(年龄26岁,身高170cm,体重60kg)采用64排CT扫描仪(西门子公司)进行右踝关节扫描,通过询问志愿者以往的病史并对其进行相关检查,排除志愿者存在踝关节损伤、肿瘤、畸形等病史。在中立位无负重状态下,基于踝关节解剖结构,利用三维处理软件Mimics,Hypermesh,Abaqus等构建包括骨与足周围软组织及关节韧带的全足三维有限元模型。2、构建中立位全足三维模型,依据Gefen.A的足踝步态分析方法结果,在坐标系中先将整个模型在失状位上逆时针旋转30o,再构建出地面,整个全足模型即与地面形成30o,形成前足着地,后足抬起30o的状态,然后在胫腓骨截面上施加重力(方向垂直地面,大小为600N),模拟后足踩地的动态过程,研究前踝在后足踩落地过程中的应力分布及位移情况,探讨落地相中多发前踝撞击的发生机制。对所构建出的全足三维有限元模型,通过与既往国外有限元全足模型结果数据相对比,验证本实验中有限元模型的准确有效性。结果1、全足数字化三维有限元模型的建立;本研究基于一名男性志愿者足踝CT图像数据,建立了包含28块骨性结构、56条韧带及足周围软组织的全足有限元模型,共219599个节点,938845个单元。2、从有限元模型分析结果可知:在后足踩地的过程中,踝关节的应力值和位移量不断增大,当模型与地面为30o时,踝关节应力峰值为0.058MPa,位移峰值为0.5633mm;当模型与地面为25o时,踝关节应力峰值为0.085MPa,位移峰值为0.7359mm;当模型与地面为20o时,踝关节应力峰值为0.116MPa,位移峰值为0.9486mm;当模型与地面为15o时,踝关节应力峰值为0.152MPa,位移峰值为1.1703mm;当模型与地面为10o时,踝关节应力峰值为0.188MPa,位移峰值为1.3981mm;当模型与地面为0o时,踝关节应力峰值为0.225MPa,位移峰值为1.6255mm。踝关节的应力峰值始终位于前踝外侧,并且不断增加,从0.085MPa增加到0.225MPa,前踝位移量也在不断地增加,从0.563mm增加到1.6255mm。结论1、本研究所构建的全足三维有限元模型准确、完整,模型的仿真性好,能够较完整的体现足踝部复杂的三维信息。2、在正常的落地过程中,踝关节的前侧始终有最大的应力和位移量,因此最容易发生撞击。
[Abstract]:Objective to study the biomechanical mechanism of multiple impact of anterior malleolus by constructing a three-dimensional finite element model of full foot in accordance with the characteristics of foot and ankle and making stress analysis to simulate the process of foot stepping on the ground during gait. Methods 1. A male volunteer (26 years old, 170 cm tall, weight 60kg) was scanned by 64 row CT scanner (Siemens). A history of ankle injuries, tumors, deformities was excluded. Under the condition of neutral position without load, based on the anatomical structure of ankle joint, the three-dimensional finite element model of the whole foot including bone and soft tissue around foot and articular ligament was constructed by using three-dimensional processing software Mimics,Hypermesh,Abaqus etc. According to the results of Gefen.A 's ankle gait analysis method, the whole model is rotated counterclockwise in the coordinate system for 30o. then the ground is constructed. The whole foot model forms 30os with the ground, forming the state of forefoot landing and hind foot lifting 30o. Then apply gravity to the section of the tibia and fibula (vertical direction, 600N), simulate the dynamic process of the hind foot, and study the stress distribution and displacement of the anterior malleolus during the landing of the hind foot. To investigate the mechanism of multiple anterior malleolus impact in landing phase. By comparing the results of the three dimensional finite element model with that of the foreign finite element model, the accuracy and validity of the finite element model in this experiment are verified. Results 1. The establishment of full foot digital 3D finite element model; Based on the CT image data of ankle and foot of a male volunteer, a finite element model of the whole foot with 28 bone structures, 56 ligaments and soft tissue around the foot was established, with 219599 nodes and 938845 units. The results of finite element model analysis show that the stress and displacement of the ankle joint increase continuously during the process of stepping on the ground. When the model and the ground are 30 o, the stress peak value of the ankle joint is 0.058 MPA and the displacement peak value is 0.5633 mm; When the model and ground are 25 o, the peak stress of ankle joint is 0.085 MPA, the peak value of displacement is 0.7359mm, when the model and ground is 20o, the peak value of stress and displacement of ankle joint is 0.116MPa and 0.9486mm, respectively. When the model and ground are 15 o, the peak stress of ankle joint is 0.152 MPA, the peak value of displacement is 1.1703 mm, when the model and ground is 10 o, the peak value of stress and displacement of ankle joint is 0.188 MPA and 1.3981 mm, respectively. When the model and ground are 0 o, the peak stress of ankle joint is 0.225 MPA and the peak value of displacement is 1.6255 mm. The stress peak of the ankle was always located at the lateral side of the anterior malleolus and increased continuously, from 0.085MPa to 0.225 MPA, and the anterior malleolus displacement increased from 0.563mm to 1.6255 mm. Conclusion 1, the 3D finite element model constructed in this study is accurate, complete, and the simulation of the model is good, and it can reflect the complex 3D information of ankle and foot completely. 2, in the normal landing process, The front of the ankle always has maximum stress and displacement, so it is most likely to impact.
【学位授予单位】:安徽医科大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R684

【相似文献】

相关会议论文 前1条

1 张盼利;陈尚建;刘敦朝;;钢支托削减应力峰值的计算[A];第十三届全国结构工程学术会议论文集(第Ⅰ册)[C];2004年

相关硕士学位论文 前4条

1 张现超;膝关节内侧副韧带生物力学的有限元分析[D];河北医科大学;2015年

2 李肇宏;股骨头坏死区分布与其应力峰值区的相关性研究[D];广州中医药大学;2016年

3 徐志庆;前踝撞击征发生机制的生物力学有限元分析[D];安徽医科大学;2017年

4 曾鹏;千枚岩加卸载及应力峰值前后声发射特性研究[D];江西理工大学;2013年



本文编号:2404639

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/waikelunwen/2404639.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户90ccb***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com