当前位置:主页 > 医学论文 > 五官科论文 >

声带小结的声学特征研究

发布时间:2018-11-27 14:58
【摘要】:随着我国工业化程度的不断提高,,引起了喉部疾病发病率的不断攀升。同时,在那些需要长期使用嗓音的职业中,喉部疾病呈现一种常态职业病的倾向。目前喉部疾病最常用的检查方法是采用喉内窥镜进行检查,这种有创式接触式的检查方式,操作复杂,病人有不适甚至痛苦感,部分病人甚至畏惧不愿意接受检查,以致耽误了治疗时间。另外,内窥镜光纤管道直接进入人体喉部的检查方式,还存在设备消毒不彻底而引发交叉感染的风险。因此从改进喉部疾病的诊断方法,降低人民群众的医疗检查费用等方面来考虑,研究一种安全的、无创的、费用低的检查方法,显得尤为必要。 此前的国内外病态嗓音识别工作和基于声学信号的喉部疾病诊断主要以健康嗓音与病态嗓音的分类识别为研究重点,其中大多数方法基于统计学或者模糊判别,无物理 数学模型。这反映了目前的研究只注重于嗓音数据与信号本身,而忽略了信号的本质是对对象某些物理特性的反映。在这个过程中没有能够提出具有一定病理意义的指标,而已经提出的指标相对来说统一性差,实验重复性差异大,准确率低。 本文将持续稳定的元音为研究对象,以人体声带的振动和发声原理为基础,将声带的振动简化为一般的理想自由弦振模型,结合波动方程的解和小结病变的物理性变化来推导声带小结病变后的声学信号特征,利用声带对称性和耦合性建立内禀标准来检测声带的小结病变,并给出了其频域的分析方法,提出差频作为声带小结的信号特征。 在本课题的研究过程中,同时开发出了一套声学信号的采集、存储、分析系统。为了更好的收集、管理和分析嗓音信号,还专门编写了针对嗓音疾病的声学数据存储系统,建立了信号分析中常用的功能和一系列具有实用性的数字信号分析的图形化工具,使得整个系统更加专业化,具有针对性。实验结果表明多数情况下小结患者的声学信号的频谱的确会产生差频现象,利用这个特征能够在一定程度上区分正常嗓音组和病变嗓音组,这对于进一步研究声带小结的声学信号特征具有积极的意义。
[Abstract]:With the development of industrialization in China, the incidence of laryngeal diseases is rising. At the same time, laryngeal diseases tend to be normal in occupations that require long-term voice use. At present, the most commonly used examination method for laryngeal diseases is the use of laryngeal endoscopy, which is an innovative contact examination, which is complicated in operation, and patients have a sense of discomfort or even pain, and some patients are even afraid of being examined. To the point of delaying the treatment. In addition, there is a risk of cross-infection caused by incomplete disinfection of the equipment in the inspection mode of direct access to the larynx of the endoscope fiber-optic conduit. Therefore, it is necessary to study a safe, non-invasive and low cost examination method from the aspects of improving the diagnosis of laryngeal diseases and reducing the medical examination cost of the masses. Previous work on the recognition of pathological voice at home and abroad and the diagnosis of laryngeal diseases based on acoustic signals mainly focused on the classification and recognition of healthy voice and pathological voice, most of which were based on statistics or fuzzy discrimination. No physical mathematical model. This reflects that the present research only focuses on the voice data and the signal itself, but neglects that the essence of the signal is the reflection of some physical characteristics of the object. In this process, the indexes with certain pathological significance can not be put forward, but the indexes that have been proposed are relatively poor in unity, there are great differences in the repeatability of experiments, and the accuracy is low. In this paper, the continuous and stable vowels are taken as the object of study. Based on the vibration and sound principle of human vocal cords, the vibration of vocal cords is simplified as a general ideal free chord vibration model. Combined with the solution of wave equation and the physical changes of nodule lesions, the acoustic signal characteristics of vocal nodules were deduced, and the intrinsic standard was established to detect nodal lesions by using the symmetry and coupling of vocal cords. The analysis method in frequency domain is given, and the difference frequency is proposed as the signal feature of vocal cord summary. In the course of the research, a collection, storage and analysis system of acoustic signal is developed. In order to collect, manage and analyze voice signals better, a special acoustic data storage system for voice diseases is developed, and the commonly used functions in signal analysis and a series of practical graphical tools for digital signal analysis are established. Make the whole system more specialized, have pertinence. The experimental results show that in most cases, the spectrum of acoustic signals of nodule patients does produce differential frequency phenomenon, which can be used to distinguish the normal voice group from the diseased voice group to a certain extent. This is of great significance to the further study of acoustic signal characteristics of vocal nodules.
【学位授予单位】:重庆理工大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:R767.41

【参考文献】

相关期刊论文 前10条

1 丁明亮;罗久飞;郭小渝;;单侧声带息肉的声学信号特征[J];重庆理工大学学报(自然科学);2011年08期

2 邵初寅,张海东;非均匀弦自由振动的求解[J];常熟高专学报;2004年04期

3 韩仲明;;嗓音声学检测分析[J];中国耳鼻咽喉头颈外科;2006年05期

4 高俊芬;胡维平;;基于非线性动力学和GMM的病态嗓音识别与研究[J];广西师范大学学报(自然科学版);2011年03期

5 蔡青,陶泽璋,杨强;发不同元音时嗓音声学分析参数的比较[J];临床耳鼻咽喉科杂志;2001年04期

6 黄昭鸣;万萍;;嗓音声学参数与嗓音音质的相关研究[J];临床耳鼻咽喉头颈外科杂志;2008年06期

7 吴跃军,欧小毅,王蜀英;声嘶500例纤维喉镜检查的临床分析[J];泸州医学院学报;2000年04期

8 刘绮明,张建国,黄敏齐;病理嗓音的定量分析[J];山东医大基础医学院学报;2002年02期

9 刘瑛;试析人工神经网络运用于社会统计分析中的可能性[J];社会;2005年04期

10 卢建筠;学习分类的理论及其价值[J];上海教育科研;2003年07期

相关硕士学位论文 前5条

1 金德斌;秦皇岛市中小学教师嗓音疾病的调查报告[D];承德医学院;2007年

2 王京川;80例喉良恶性疾病的噪音分析[D];青岛大学;2006年

3 于燕平;基于小波变换和GMM的病态嗓音特征提取及识别研究[D];广西师范大学;2008年

4 熊屹;基于ANN与SVM的病态嗓音识别研究[D];天津大学;2007年

5 王慧;记波扫描声带振动图在嗓音疾病诊断中的意义[D];天津医科大学;2009年



本文编号:2361199

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/wuguanyixuelunwen/2361199.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3d641***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com