ASIC1a介导的自噬对高糖及PDGF诱导的HSC-T6活化的影响及相关机制研究
[Abstract]:Diabetes mellitus (DM) is a complex, multi-system metabolic disease characterized by hyperglycemia and tissue acidification, which can lead to various organ damage and dysfunction. Hepatic fibrosis (HF) is the liver's wound-healing response to various chronic liver injuries. Its essence is extracellular matrix (E-matrix). The accumulation of CM. Hepatic stellate cell (HSC) is the most important cell that produces extracellular matrix components in the liver. Resting hepatic stellate cells can only be activated to induce liver fibrosis. Studies have shown that hyperglycemia is an independent co-factor in the progression of fibrosis in patients with chronic hepatitis C. Hyperglycemia is an important promoter of the development of liver-related diseases. In recent years, the incidence of diabetes mellitus complicated with hepatic fibrosis has gradually increased. In-depth study of the effect of hyperglycemia on the development of hepatic fibrosis has an important role in the mechanism of HSC cell activation and proliferation in the process of hepatic fibrosis. The acid-sensing channel 1a (ASIC1a) is a kind of cationic channel protein complex activated by extracellular H +. The open channel is permeable to Na +, Ca2 +. The opening of ASIC1a channel can lead to extracellular calcium influx. Autophagy plays an important role in the activation of HSC. In the case of liver injury, resting hepatic stellate cells can become activated hepatic stellate cells by up-regulating autophagy, increasing energy production through lipid metabolism and leading to liver fibrosis. Previous studies have shown that hyperglycemia can induce liver injury, promote HSC activation and proliferation, and aggravate liver fibrosis. In this process, ASIC1a is highly expressed in the whole model and cell line level. Further studies have found that ASIC1a is involved in hyperglycemia promoting PDGF-induced HSC activation and proliferation, and aggravating the progress of liver fibrosis. It is not clear whether hyperglycemia promotes the activation and proliferation of HSC induced by PDGF by promoting the expression of ASIC 1a and then up-regulation of autophagy, which promotes the activation and proliferation of HSC and aggravates the progress of hepatic fibrosis. So far, there are no reports on the related studies at home and abroad. Based on the previous studies of the research group, this study focused on high glucose and pdg. F co-stimulates HSC cells, establishes in vitro high glucose and hepatic fibrosis dual model, explores the effect of asic-1a-mediated autophagy on the proliferation and activation of HSC cells in the process of hepatic fibrosis under high glucose environment, and the related mechanisms. The main research contents are summarized as follows: 1. The expression of autophagy-related proteins in the liver tissues of diabetic rats with hepatic fibrosis is before the research group. On the rat model established by streptozotocin and carbon tetrachloride, HE staining and Masson staining were used to observe the pathological changes of the liver in the experimental group. The results showed that the liver tissues of diabetic rats and hepatic fibrosis rats were significantly damaged, and the liver injury in the diabetic rats with hepatic fibrosis group was the most serious. Autophagy-related proteins lc3ii and beclin1, liver fibrosis-related proteins alpha-SMA and CollagenI were measured. the results showed that the expression of lc3ii, beclin1, alpha-SMA and CollagenI in the liver tissue of diabetic rats, hepatic fibrosis rats and diabetic rats with hepatic fibrosis was higher than that of the control group. The results showed that autophagy may be related to the process of diabetes mellitus aggravating liver fibrosis. 2. The changes of autophagy and HSC-T6 stimulated by high glucose and PDGF in order to detect the expression of asic-1a and autophagy in diabetic liver fibrosis cell model. Referring to the pre-conditions of the research group, HSC-T6 cells were stimulated with high glucose (6000mg / l) for 24 hours and then PDGF (10ng / ml) was given to stimulate HSC-T6 cells for 24 hours to establish an in vitro model of high glucose with hepatic fibrosis. Western blot was used to detect the expression of asic1a, autophagy-related protein lc3ii and beclin1, liver fibrosis-related protein alpha-SMA and collageni, and ptflc-3 plasmid transduction. Autophagy was observed by staining and MDC staining. the results showed that high glucose and PDGF stimulation could enhance the expression of asic1a, a-SMA and CollagenI in hsc-t6, accompanied by the increase of autophagy. the high glucose combined with PDGF double model group was the most obvious, and the difference between the high glucose group and PDGF group was statistically significant. Effects of high glucose and PDGF stimulation on the proliferation and activation of HSC-T6 in order to observe the effect of autophagy on the proliferation and activation of hsc, 3-mA was given to block the autophagy of HSC stimulated by high glucose and pdgf, and the expressions of autophagy-related proteins lc3ii and beclin1, liver fibrosis-related proteins alpha-SMA and CollagenI were detected by Western blot. The effect of autophagy blocker 3-mA on the cell cycle of HSC-T6 stimulated by high glucose and PDGF in order to further observe the effect of autophagy on the proliferation and activation of hsc, flow cytometry was used to detect the cell cycle of each group under the co-stimulation of 3-ma, high glucose and pdgf. The results showed that 3-mA could increase the proportion of G0 / G1 phase cells, decrease the proportion of G2 / M phase cells and inhibit the proliferation of hsc. there was a significant difference between the high glucose group and PDGF group. 5. the effect of amiloride on autophagy in HSC-T6 stimulated by high glucose and pdgf. in order to observe whether asic-1a in HSC stimulated by high glucose and PDGF affected autophagy or not, the effect of asic-1a in HSC was non-specific. The expression of ASIC 1a, autophagy-related protein LC 3ii and Beclin 1, liver fibrosis-related protein alpha-SMA and collageni, ptflc-3 plasmid transfection and MDC staining were detected by Western blot. The results showed that amiloride could decrease the levels of high glucose and pdgf. The expression of ASIC1a in HSC was down-regulated by stimulation, and the expression of autophagy-related proteins lc3ii and beclin1, liver fibrosis-related proteins alpha-SMA and CollagenI were also down-regulated by stimulation. ptflc-3 plasmid transfection and MDC staining showed that amiloride could induce the decrease of HSC autophagy under high glucose and PDGF stimulation. 6. C-t6 autophagy in order to further observe the effect of ASIC1a on autophagy, specific asic1a-shrna was transfected into HSC-T6 stimulated by high glucose and pdgf. Western blot was used to detect the expression of asic1a, autophagy-related proteins lc3ii and beclin1, liver fibrosis-related proteins alpha-SMA and collageni. The expression of ASIC1a protein in HSC-T6 was decreased, while the expressions of LC3II and Beclin1, alpha-SMA and Collagen I were also decreased. There was a significant difference between the high glucose and PDGF groups. The results showed that both high glucose and PDGF stimulation could enhance the expression of CaMKK beta and the phosphorylation level of ERK in HSC-T6, especially in high glucose combined with PDGF double model group, and the difference between high glucose group and PDGF group was statistically significant. The effect of aMKK beta/ERK pathway on the expression of CaMKK beta/ERK pathway protein in HSC-T6 stimulated by high glucose and PDGF was further observed. Amiloride, high glucose and PDGF were used to stimulate HSC. Western Blot was used to detect the expression of CaMKK beta and the phosphorylation level of ERK. The phosphorylation level of ERK was significantly different from that of PDGF group.
【学位授予单位】:安徽医科大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R575.2;R587.1
【相似文献】
相关期刊论文 前10条
1 陈英,彭心昭,朴英杰;自噬分子机制的研究动向[J];解剖科学进展;2000年04期
2 叶青;郑民华;;自噬的分子机制与病理生理意义[J];国际病理科学与临床杂志;2007年04期
3 何韬;王海杰;谭玉珍;;自噬在细胞存活和死亡中的作用[J];生理科学进展;2008年01期
4 张志才;邵增务;;自噬分子机制的研究进展[J];现代生物医学进展;2008年01期
5 赵勇;师长宏;伍静;张海;;自噬的形态特征及分子调控机制[J];中国比较医学杂志;2010年10期
6 王梅;李庆林;;自噬与癌症的治疗[J];安徽医药;2010年08期
7 伍静;赵勇;师长宏;张海;;自噬的形态特征及分子调控[J];现代生物医学进展;2010年20期
8 王雄;谭璐;;自噬研究进展[J];亚太传统医药;2010年10期
9 卞龙艳;;运动与自噬的关系进展研究[J];齐齐哈尔医学院学报;2011年07期
10 王伟;徐忠东;陶瑞松;;肿瘤发生过程中自噬与凋亡关系的研究[J];合肥师范学院学报;2011年06期
相关会议论文 前10条
1 韦雪;漆永梅;张迎梅;;镉、活性氧自由基与自噬发生的分子机制[A];中国活性氧生物学效应学术会议论文集(第一册)[C];2011年
2 秦正红;粱中琴;陶陆阳;黄强;刘春风;蒋星红;倪宏;邢春根;;自噬在细胞生存与死亡中的作用[A];中国药理学会第九次全国会员代表大会暨全国药理学术会议论文集[C];2007年
3 秦正红;;自噬与肿瘤和神经细胞生存——药物作用的新靶位[A];全国生化与分子药理学药物靶点研讨会论文摘要集[C];2008年
4 李芹;丁壮;;自噬功能研究进展[A];中国畜牧兽医学会家畜传染病学分会第八届全国会员代表大会暨第十五次学术研讨会论文集[C];2013年
5 胡晨;张璇;滕衍斌;胡海汐;周丛照;;家蚕中自噬相关蛋白Atg8的结构研究[A];华东六省一市生物化学与分子生物学会2009年学术交流会论文摘要汇编[C];2009年
6 陈希;李民;Xiao-Ming Yin;李林洁;;通过不同途径诱导自噬的化合物对Atg9的依赖性不同[A];细胞—生命的基础——中国细胞生物学学会2013年全国学术大会·武汉论文摘要集[C];2013年
7 陈涓涓;敬静;蔡元博;张俊龙;;针对活体细胞自噬行为的发光金属配合物的设计[A];中国化学会第28届学术年会第8分会场摘要集[C];2012年
8 宁晓洁;钟自彪;王彦峰;付贞;叶启发;;缺血再灌注诱导小鼠肝细胞自噬[A];2013中国器官移植大会论文汇编[C];2013年
9 吴晓琦;李丹丹;邓蓉;江山;杨芬;冯公侃;朱孝峰;;CaMKKβ磷酸化Beclin 1调控自噬及其在肿瘤治疗中的作用[A];2011医学科学前沿论坛第十二届全国肿瘤药理与化疗学术会议论文集[C];2011年
10 周鸿雁;裴中;陈杰;申存周;钱浩;刘妍梅;冼文彪;郑一帆;陈玲;;线粒体动力改变参与了LRRK2突变导致的自噬[A];中华医学会第十三次全国神经病学学术会议论文汇编[C];2010年
相关重要报纸文章 前3条
1 生命学院;俞立课题组在《科学》发文揭示自噬调控的重要机制[N];新清华;2012年
2 周飞 张粹兰;花榈木“自噬”可抗癌[N];广东科技报;2011年
3 张明永;水稻自噬基因研究取得新进展[N];广东科技报;2011年
相关博士学位论文 前10条
1 贾盛楠;转录因子p8调控自噬的功能研究[D];浙江大学;2015年
2 皮会丰;DNM1L蛋白介导的线粒体自噬在镉致肝脏毒性中的作用研究[D];第三军医大学;2015年
3 李倩;miRNAs介导的自噬抑制在类鼻疽杆菌感染免疫逃逸中的作用机制研究[D];第三军医大学;2015年
4 黎炳护;激活TRPV1诱导自噬在血管平滑肌细胞泡沫化中作用及机制研究[D];第三军医大学;2015年
5 陈江伟;自噬在椎间盘退变中的作用及机制研究[D];上海交通大学;2014年
6 李荣荣;自噬在布比卡因肌毒性中的作用及机制研究[D];南京医科大学;2015年
7 王维;NF-κB信号通路参与介导的自噬在高血压大鼠心血管重构的作用研究[D];山东大学;2015年
8 刘春朋;日粮硒缺乏对鸡肝脏蛋白质组学及自噬变化的影响[D];东北农业大学;2015年
9 梁蓓蓓;P53凋亡刺激蛋白ASPP2调控细胞自噬的研究[D];上海交通大学;2012年
10 袁扬;线粒体自噬的抗缺血性脑损伤作用及其调控机制研究[D];浙江大学;2016年
相关硕士学位论文 前10条
1 匡红;Jnk2通过smARF的降解来调控压力诱导的线粒体自噬及组织损伤[D];浙江理工大学;2015年
2 洪永桃;自噬在类风湿关节炎滑膜成纤维细胞中的作用及甲氨蝶呤对自噬的影响[D];川北医学院;2015年
3 李宁;自噬在吗啡心肌保护中的作用及机制研究[D];河北联合大学;2014年
4 刘冰;脑缺血预处理对大鼠局灶性脑缺血再灌注后自噬及凋亡的影响[D];河北联合大学;2014年
5 王存凯;microRNA-30a-5p通过抑制自噬阻止肝星状细胞激活[D];河北医科大学;2015年
6 张宇程;泛素连接酶HOIL-1L在线粒体自噬中的功能与机制研究[D];中国人民解放军军事医学科学院;2015年
7 唐芙蓉;自噬对奶山羊雄性生殖干细胞生物学特性的影响[D];西北农林科技大学;2015年
8 陈军童;肾损伤分子1对高糖诱导人肾小管上皮细胞自噬作用的影响[D];郑州大学;2015年
9 包勇;Kap1在LBH589诱导的乳腺癌细胞MCF-7自噬形成中的作用[D];复旦大学;2013年
10 魏园玉;P53缺失型HL-60白血病细胞内Nucleostemin下调对mTOR通路介导的自噬活性的影响[D];郑州大学;2015年
,本文编号:2243429
本文链接:https://www.wllwen.com/yixuelunwen/xiaohjib/2243429.html