内皮祖细胞眼内移植的示踪及对视网膜血管损伤修复的研究
[Abstract]:Diabetic retinopathy, including retinopathy of premature infants, central retinal vein occlusion and other retinal ischemic diseases, is characterized by neovascularization. Additionally, it causes edema and exudation of peripheral tissues, and then leads to ischemia and hypoxia of retinal tissues, and compensatory formation of new blood vessels with incomplete organizational structure, leading to bleeding, proliferation, and even retinal detachment, which seriously threatens the visual acuity of patients. Endothelial growth factor inhibitors, photodynamic therapy, steroid hormones and surgical treatment can reduce angiogenesis to a certain extent, but can not fundamentally eliminate angiogenesis factors, and accompanied by a series of side effects and the possibility of recurrence. Retinal ischemic diseases and pathological neovascularization play an important role in the formation and development of retinal ischemic diseases. Therefore, the key to control retinal neovascularization is to repair damaged vascular endothelium and improve retinal hypoxia and hypoxia. EPCs transplantation can improve the ischemic injury of heart, brain and limbs, increase the blood flow and capillary density in ischemic sites, and improve the therapeutic effect on ischemic diseases. If EPCs can be effectively transplanted to the ischemic and hypoxic retina region It is possible to repair damaged vascular endothelium, improve retinal blood supply, and avoid pathological neovascularization. This study requires not only appropriate cell transplantation, but also a stable and efficient tracing method to provide an objective basis for the experiment.
Carboxyfluorescein diacetate succinimide ester (CFSE) labeled EPCs, Dil labeled acetylated low density lipoprotein (DiI-AcLDL) labeled EPCs and lentivirus mediated green fluorescent protein (GFP) transduction of EPCs were used to compare the tracing of EPCs in vitro and in vivo, and to observe the repairing effect of transplanted EPCs on retinal vascular injury. It provides an experimental basis for selecting suitable markers for cell transplantation and better tracking the efficacy of EPCs transplantation.
Method
(1) Culture and identification of EPCs from human umbilical cord blood: Mononuclear cells from human umbilical cord blood were isolated by hydroxyethyl starch sedimentation and Percoll density gradient centrifugation, and differentiated into EPCs in vitro. The cells were identified by morphology, flow cytometry, immunofluorescence staining and electron microscopy. Methods EPCs were labeled in vitro by CFSE, DiI-AcLDL and lentivirus-mediated GFP gene transduction. The morphological changes of the cells before and after labeling were observed by inverted phase contrast microscope. The viability and adhesion of the labeled EPCs were measured by Trypan blue staining and adherent cell counting. The fluorescence intensity was observed under fluorescence microscope. Flow cytometry was used to determine the positive rate of labeling and compare the advantages and disadvantages of the three methods. (3) Intraocular transplantation of labeled EPCs: C57BL/6N mice retinal vascular injury model was established by multi-wavelength krypton laser selective injury. EPCs labeled with LDL, CFSE and lentivirus mediated GFP gene transduction were transplanted into vitreous cavity by microinjector under operating microscope. Fundus photography, retinal paraffin section, frozen section and retinal paving were observed at different time intervals. The distribution, fluorescence intensity and persistence of labeled cells in longitudinal and transverse plane of retina were observed. Time and other conditions, and compare the repair of retinal vascular injury before and after EPCs transplantation.
Result
(1) The primary cultured EPCs were isolated from human umbilical cord blood and showed typical morphological changes during the culture process. The cells expressed CD34, CD133 and''VEGFR-2 in different degrees. They could phagocytose DiI-AcLDL and combine with FITC-UEA-I. The W-P bodies of endothelial cells were observed under electron microscope, which proved that most of the cultured cells were in large part of the population. The positive rate of EPCs labeled with DiI-AcLDL was up to 80%. The fluorescence intensity of CFSE and DiI-AcLDL labeled EPCs lasted for 4 weeks and gradually decreased with the time of culture. Four days after transduction of GFP gene by lentivirus, the positive rate of EPCs labeled with DiI-AcLDL was up to 95%. The green fluorescence was observed under confocal microscope, and then the green fluorescence positive cells increased gradually, the fluorescence intensity increased gradually, and the transfection efficiency exceeded 30% at 4 weeks after transduction. Changes. (3) In vivo, retinal vascular injury model was successfully established by laser photocoagulation in mice. After intravitreal injection of labeled EPCs, laser spot pigmentation and scar formation were observed in fundus photography at 4 weeks after transplantation, which were less severe than those in non-transplanted eyes. After transplantation, the frozen sections of the retina showed that fluorescent cells could be seen on the surface of the retina 2 days after transplantation of DiI-AcLDL and CFSE-labeled EPCs. At 1 week, fluorescent cells could be seen in the injured area. At 4 weeks, fluorescent cells could be seen in all layers of the retina. There were no fluorescent cells in the frozen sections of retina at each time point after lentivirus-mediated GFP gene transduction of EPCs transplantation. Evans blue perfusion angiography could clearly show the structure of retinal capillary network, and fluorescent leakage could be seen in the laser spot of retinal vascular injury model. Two days after transplantation, green fluorescent labeled cells clustered on the retina. One week after transplantation, green fluorescent labeled cells clustered around the laser injury. Four weeks after transplantation, green fluorescent labeled cells formed a similar tubular structure, confirming that EPCs participated in retinal vascular repair.
conclusion
(1) CFSE and Dil-AcLDL are suitable for short-term tracing of EPCs. CFSE has the highest efficiency, the strongest initial fluorescence, the lowest cost, the simplest operation and the advantages of short-term tracing. CFSE labeling EPCs combined with frozen section of retina and Evans blue perfusion retina paving have established a multi-angle observation method for the tracing of EPCs intraocular transplantation. Gene-transduced EPCs have more potential in long-term tracing. (2) Retinal vascular injury model was established by laser photocoagulation in mice, and intraocular transplantation of EPCs was performed by intravitreal injection.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2011
【分类号】:R774.1
【相似文献】
相关期刊论文 前10条
1 赵纯平,张静珠,张蕊,曹金霓;视网膜血管性病变的血浆内皮素水平变化的探讨[J];天津医药;2000年07期
2 王黎明;远达创伤性视网膜血管病变七例[J];中华眼底病杂志;1998年02期
3 封志纯;杨军;;早产儿合理氧疗与早产儿视网膜病的预防[J];实用儿科临床杂志;2006年02期
4 朱宣和;;激光与某些视网膜疾患[J];国际眼科纵览;1979年04期
5 沈珂;盘状红斑狼疮并发视网膜血管炎一例[J];中华眼底病杂志;1997年02期
6 侯静,童绎;急性带状隐匿性外层视网膜病变[J];国外医学.眼科学分册;2005年02期
7 赵海廷;茅双根;;早产儿视网膜病与氧疗的关系[J];中国临床药理学与治疗学;2008年05期
8 马凯,彭晓燕,卢宁,王光璐,张风;放射性视网膜病变的临床观察[J];眼科;2004年01期
9 丁国芳;;早产儿视网膜病及其影响因素[J];实用儿科临床杂志;2006年02期
10 阚瑰玲;远达性视网膜病变20例临床观察[J];眼科;2003年06期
相关会议论文 前10条
1 张含;刘哲丽;张洋;孙鹏;杨德琪;孙昱昭;谷峰;;FLK-1单克隆抗体抑制实验性视网膜血管新生的实验研究[A];中国眼底病论坛·全国眼底病专题学术研讨会论文汇编[C];2008年
2 贾春月;王波;;双侧Sturge-Weber综合征一例[A];中国眼底病论坛·全国眼底病专题学术研讨会论文汇编[C];2008年
3 贺杰;;家族性渗出性玻璃体视网膜病变[A];中国眼底病论坛·全国眼底病专题学术研讨会论文汇编[C];2008年
4 高磊;王富华;陈宁;东长霞;;视网膜分支静脉阻塞对视网膜血管直径的影响[A];中华医学会第十二届全国眼科学术大会论文汇编[C];2007年
5 董丽;张晓梅;穆华;冯卓蕾;;超早期视网膜激光光凝治疗缺血性视网膜中央静脉阻塞的临床观察[A];中国眼底病论坛·全国眼底病专题学术研讨会论文汇编[C];2008年
6 江睿;甫拉提;陈荣家;王文吉;;细针穿刺活检诊断视网膜母细胞瘤二例[A];中国眼底病论坛·全国眼底病专题学术研讨会论文汇编[C];2008年
7 林土胜;赖声礼;;视网膜血管特征提取的拆支跟踪法[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年
8 王玉环;陈超;石文静;;不同日龄新生小鼠的视网膜血管对氧疗的敏感性[A];第三届长三角围产医学学术论坛暨2006年浙江省围产医学学术年会论文汇编[C];2006年
9 王玉环;陈超;石文静;;不同日龄新生小鼠的视网膜血管对氧疗的敏感性[A];2006(第三届)江浙沪儿科学术会议暨浙江省儿科学术年会论文汇编[C];2006年
10 杨成明;刘伟;赵燕颖;张丽华;吴雅臻;;人参单体皂苷Rh2抑制缺氧条件下人视网膜血管内皮细胞增生及整合素avβ3表达的研究[A];中国眼底病论坛·全国眼底病专题学术研讨会论文汇编[C];2008年
相关重要报纸文章 前10条
1 新华;视网膜自我修复研究有突破[N];福建科技报;2007年
2 方磊平;鲜为人知的眼中风[N];大众卫生报;2007年
3 健康时报特约专家 陶海;吸烟者视网膜更易出血[N];健康时报;2006年
4 辽宁省中医药研究院眼科 左韬;糖尿病性视网膜病变中西结合疗效好[N];卫生与生活报;2006年
5 ;血脂增高须防双目失明[N];医药养生保健报;2006年
6 易善永;关注早产儿的眼睛[N];中国医药报;2007年
7 本报记者 白轶南;早期症状不重视 待到治疗已无望[N];保健时报;2005年
8 封锡彬;警营,点亮患儿光明之灯[N];北方法制报;2007年
9 张旌;视网膜细胞可再生,,实验鼠复明成功[N];新华每日电讯;2007年
10 闻声;英国:试验视网膜疾病基因疗法[N];中国医药报;2007年
相关博士学位论文 前10条
1 石慧;内皮祖细胞眼内移植的示踪及对视网膜血管损伤修复的研究[D];吉林大学;2011年
2 张婷;大鼠视网膜血管的电紧张传导的研究[D];复旦大学;2011年
3 杨侠;C57小鼠氧诱导模型视网膜的血管形态学观察、基因表达谱分析和Edn2功能初探[D];青岛大学;2011年
4 高玉;microRNA在糖尿病大鼠视网膜中表达差异谱的研究[D];第二军医大学;2010年
5 郑丽娟;两种自发性视网膜退行性变动物的形态学研究[D];第四军医大学;2011年
6 冯梅;饱和氢气生理盐水对大鼠视网膜蓝光损伤的保护作用[D];华中科技大学;2012年
7 王爽;血小板反应蛋白-1在小鼠视网膜缺血再灌注损伤中的作用及在糖尿病视网膜病变中的应用价值[D];吉林大学;2012年
8 李佳;2-SeCD对糖尿病视网膜微血管病变AGEs传导通路的干预作用研究[D];吉林大学;2010年
9 金玮;人脐带间充质干细胞跨越分化及挽救感光细胞凋亡的探索研究[D];武汉大学;2011年
10 陈晓菲;视网膜小胶质细胞在糖尿病大鼠视网膜神经病变中的作用研究[D];中国人民解放军军医进修学院;2012年
相关硕士学位论文 前10条
1 窦方方;鼠视网膜血管发育中的内皮细胞转型机制[D];青岛大学;2011年
2 张克剑;pEGFP/Ang-1转染大鼠BMSCs视网膜下移植对糖尿病大鼠视网膜血管渗漏的影响[D];辽宁医学院;2011年
3 孔维芳;小鼠视网膜片层化及神经干细胞增殖与分化的研究[D];河南大学;2012年
4 程海霞;db/db小鼠早期视网膜神经变性观察[D];南京医科大学;2012年
5 石瑜珍;葡萄糖浓度波动对兔视网膜Müller细胞的作用及可能机制[D];福建医科大学;2012年
6 王淑雅;血红蛋白载氧体在大鼠视网膜慢性低灌注损伤中对视网膜的保护作用[D];天津医科大学;2012年
7 黄愉;视网膜上电刺激的三维有限元建模和仿真研究[D];上海交通大学;2013年
8 丁煜;3-氨基苯甲酰胺对高糖培养的牛视网膜血管内皮细胞增殖的影响[D];安徽医科大学;2012年
9 周洁;孕期酒精暴露对仔鼠视网膜发育及细胞凋亡的影响[D];河南大学;2012年
10 侯培;苹果酸舒尼替尼对体外培养的恒河猴脉络膜视网膜血管内皮细胞增殖和迁移的影响[D];广西医科大学;2010年
本文编号:2246534
本文链接:https://www.wllwen.com/yixuelunwen/yank/2246534.html