新型压电传感器提取听骨链声信号及后期处理
[Abstract]:Objective: to develop a new piezoelectric sensor by vacuum encapsulation and titanium clip, and to pick up the acoustic signal in vitro by coupling the new piezoelectric sensor with the ossicular chain in the ears of fresh temporal bone specimens and living cats. The experimental study on the post-processing of acoustic signals systematically verified the feasibility of the sound picking strategy of ossicular chain vibration, and provided a solution for the whole cochlear implantation. Methods: (1) A new piezoelectric sensor was fabricated by adding titanium clip, lead tube insulator and laser package. The simulation experiment in vitro was carried out by fixing it on the loudspeaker windshield. (2) A three-dimensional reconstruction model of a new piezoelectric sensor coupled to the human auditory ossicular chain was established. Finite element analysis is used to simulate the frequency response displacement of ossicular chain before and after coupling the new piezoelectric sensor and the frequency response displacement of the new piezoelectric sensor on the human ossicular chain. (3) the new piezoelectric sensor is implanted into the fresh temporal bone. The ossicular chain incus long process and tympanic cavity of the specimen, A total of 7 ears (6 cadaveric heads) were tested to record the frequency response at different frequencies. (4) the new piezoelectric sensor was implanted into fresh temporal bone, and the Burst signal was given by the test system. The input signal and output signal of the new piezoelectric sensor are recorded synchronously by NI instrument, thus the relative delay time of the sensor system is analyzed. (5) the new piezoelectric sensor is implanted into the hammer neck and auditory vesicle of the auditory ossicular chain of the cat in vivo. A total of 5 ears (4 cats) were tested to record the frequency response at different frequencies. (6) the distortion and distortion of the pick-up signal of the new piezoelectric sensor were processed, and the total harmonic distortion and signal-to-noise ratio of the signal were calculated. The quality of the signal before and after processing is compared. Results: (1) it was found that the new piezoelectric sensor with a mass of 67 mg could sensitively pick up audible acoustic signals in the whole frequency band and had a flat frequency response curve. It can be used in vivo implantation experiment. (2) finite element analysis shows that the coupling of the new piezoelectric sensor to the long process of incus has little effect on the frequency response displacement of stapes floor, but increases slightly below 1000Hz and decreases slightly above 1000Hz. The new piezoelectric sensor fixed to the long process of incus can produce the corresponding displacement response, but slightly lower than the movement of stapes floor. (3) fresh temporal bone implantation experiment found, After coupling to the long process of incus, the new piezoelectric sensor can pick up the acoustic signal in vitro, and the low frequency interference is small and the resonance phenomenon is weak, which is compared with that suspended in tympanic cavity (- 92.94 dB rms ref 1V at 1000Hz). After coupling with the long process of ossicular anvil, it has a better spectral response (- 56.58 dB rms ref 1V at 1000Hz), and the 100Hz-10000Hz frequency response curve is flat. (4) the phase difference between input and output signal channels is compared. It is found that the relative delay time of the new piezoelectric sensor is 14.75 ms. (5). It is found that the new piezoelectric sensor can pick up the acoustic signal in vitro after coupling to the hammer neck. Compared with that placed in auditory vesicle (- 87.43 dB rms ref 1V at 1000Hz), it had a better spectral response (- 46.92 dB rms ref 1V at 1000Hz) after coupling with hammer neck. The 100Hz-10000Hz frequency response curve is flat. (6) compared with the original signal, the signal-to-noise ratio (SNR) of the processed signal is obviously increased, and the overall harmonic distortion is obviously reduced. Conclusion: (1) the fixation method with titanium clip has been developed. A new type of piezoelectric sensor with good sealing and biocompatibility is proposed. (2) the feasibility of picking up the acoustic signal of ossicular chain vibration by a new piezoelectric sensor is preliminarily demonstrated by systematic experiments. (3) A new piezoelectric sensor After processing, the picked signal can further improve the signal quality. (4) the new piezoelectric sensor is combined with the inner electrode of the cochlea. The long-term implantation effect and complications still need to be further studied.
【学位授予单位】:复旦大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:R764
【相似文献】
相关期刊论文 前10条
1 朱婧;彭承琳;张锦华;黄戎;;压电传感器及其在生物医学中的应用研究[J];医疗卫生装备;2006年07期
2 魏万之,胡昌文,魏开湄,聂利华,姚守拙;压电石英传感器同时测定水溶液中维生素B_1及维生素C[J];药学学报;1993年10期
3 麦庆军;;压电传感器二测量电路特性的探讨[J];数理医药学杂志;2009年01期
4 卫琳;毕良佳;孟宪文;苏鑫;白雪峰;;鉭垫-压电传感器装置对磨牙症的检测—力的再现性[J];哈尔滨医科大学学报;2008年06期
5 陈天华;王倩;;基于MSP430和压电传感器的人体心率检测系统设计[J];制造业自动化;2013年15期
6 刘燕萍;孟利娟;吴平辉;;一种声光显示听诊器的研制[J];科技资讯;2012年03期
7 刘明华,府伟灵,张雪,陈鸣,薛强;离子强度对压电传感器基因杂交动力学的影响[J];第三军医大学学报;2002年01期
8 齐永志;姚春艳;罗阳;府伟灵;;适配子型压电传感器的实验研究[J];中华医院感染学杂志;2008年03期
9 刘明华,府伟灵,陈鸣,汪松林,黄庆;不同温度对压电传感器基因杂交效应的影响[J];重庆医学;2001年06期
10 李鸿波,徐明龙,姚月玲,张少锋;PVDF动态鉭力测试仪的研制及应用[J];实用口腔医学杂志;2004年02期
相关会议论文 前5条
1 王军锋;杨黎明;迟庆;;基体隔离式高灵敏度压电传感器的设计[A];中国工程物理研究院科技年报(2002)[C];2002年
2 石晓玲;袁慎芳;邱雷;;压电智能夹层抗电磁干扰设计[A];2010航空试验测试技术学术交流会论文集[C];2010年
3 王世文;;埋入式压电传感器机械-电场耦合特性研究[A];复合材料的现状与发展——第十一届全国复合材料学术会议论文集[C];2000年
4 刘向阳;张平;韩振海;;动态补偿法在压电传感器静态校准中的应用[A];第二届全国信息获取与处理学术会议论文集[C];2004年
5 姚军;朱振宇;;压电方程与两种压电传感器模型[A];中国航空结构动力学专业组第十六届学术交流会论文集[C];2008年
相关重要报纸文章 前3条
1 四维 摘译;公文包防盗报警器[N];电子报;2008年
2 江明 译;震动式防盗报警器[N];电子报;2003年
3 天生 摘译;敲门警报指示电路[N];电子报;2003年
相关博士学位论文 前7条
1 贾贤浩;新型压电传感器提取听骨链声信号及后期处理[D];复旦大学;2014年
2 徐东宇;水泥基压电传感器的制备、性能及其在土木工程领域的应用研究[D];山东大学;2010年
3 高娜;微型压电传感器提取听骨链声信号及后期处理[D];复旦大学;2013年
4 连琰;新型微电极串联压电传感器在生物分析中的应用研究[D];湖南大学;2014年
5 张进忠;压电体声波微生物传感及其应用研究[D];湖南大学;2001年
6 杨段玲;固液界面吸附及火灾物证鉴定中新分析方法的研究[D];山东大学;2005年
7 米贤文;新型噬菌体压电传感器快速检测结核分枝杆菌的机理及其药敏应用效果的研究[D];湖南大学;2013年
相关硕士学位论文 前10条
1 薛岩波;水泥压电传感器信号分析处理系统的研究与开发[D];济南大学;2010年
2 何涛焘;纵波压电传感器瞬态特性的模拟与实验研究[D];湘潭大学;2010年
3 沙飞;压电传感器应力/应变传感特性及其在混凝土监测中的应用[D];济南大学;2014年
4 亓永;提高压电传感器信噪比的数据处理新方法研究与应用[D];山东师范大学;2006年
5 赵猛;凝血酶原时间压电传感器频率动态响应规律的研究及压电凝血传感器检测系统的研制[D];第三军医大学;2006年
6 李蜜蜜;水泥基压电传感器的制备及其应用研究[D];济南大学;2013年
7 李少雄;一种新型聚合物石英压电传感器的设计及其力学行为研究[D];北京交通大学;2013年
8 杜军国;几种非理想状态下压电传感器的响应及应用[D];山东师范大学;2010年
9 项美玉;新型串联式压电微生物传感器的构建及应用研究[D];湖南大学;2012年
10 侯海玉;智能压电传感器开发平台的设计与研究[D];燕山大学;2006年
,本文编号:2478755
本文链接:https://www.wllwen.com/yixuelunwen/yank/2478755.html