靶向碳纳米管载药体系的功能化设计及抗肿瘤活性、光热治疗的研究
本文关键词:靶向碳纳米管载药体系的功能化设计及抗肿瘤活性、光热治疗的研究 出处:《暨南大学》2016年硕士论文 论文类型:学位论文
更多相关文章: 碳纳米管 药物传递系统 抗肿瘤 靶向 化学治疗 光热治疗
【摘要】:碳纳米管具有特殊的结构特征,被广泛用于电化学,机械性能,生物医药领域的研究。由于具有大的比表面积,可以较高程度的吸附或共价键合大部分分子,同时物理特性如在近红外的强吸收,可用于光热治疗,基于此,我们利用碳纳米管的特性,选用不同修饰剂对其进行表面功能化,并负载不同的抗肿瘤药物,同时研究了光热治疗与化学治疗结合的抗肿瘤活性及作用机制。本文的主要研究内容如下:1.生物素靶向多壁碳纳米管体系抑制胶质瘤C6细胞增殖的机制研究。本章用生物素(Biotin)表面功能化修饰多壁碳纳米管,制备具有特异性识别肿瘤细胞的Biotin@MWCNTs/Oxa体系。通过MTT法筛选表明其能够有效抑制胶质瘤C6细胞的增殖。此外,Biotin能够特异性识别肿瘤细胞膜上的生物素受体,能显著提高药物在肿瘤细胞内的累积量。同时,Biotin@MWCNTs/Oxa能够通过受体介导和肌动蛋白、网格蛋白、脂质筏蛋白介导的内吞作用进入细胞,并在溶酶体释放,引起ROS的过量产生,造成DNA损伤,进而抑制C6细胞的增殖。2.靶向单壁碳纳米管和靶向多壁碳纳米管载药体系的抗肿瘤活性和机制对比。本章通过RGD-c表面功能化修饰SWCNTs体系和MWCNTs体系,并从多个方面来对比了两者的区别,比如载药率,安全性,选择性,药物释放速率及分子机制等。SWCNTs体系在载药率,药物释放速率和细胞选择性吸收上具有相对的优势,其原因是SWCNTs体系的比表面积更大。而在抗肿瘤活性方面,对比其不同正常细胞下的安全系数,SWCNTs体系与MWCNTs体系各有各自的优势。流式分析结果显示DOX@SWCNTs-F127-RGD和DOX@MWCNTs-F127-RGD均是引起细胞凋亡和G0/G1期阻滞来诱导MCF-7细胞死亡的。3.功能化多壁碳纳米管载药体系在热化疗方面的抗肿瘤活性及作用机制研究。本章内容设计并制备了具有pH响应的三嵌段聚合物和靶向多肽AE105双重修饰的碳纳米管体系,同时负载水溶性差的有机硒化合物PSeD作为抗肿瘤药物。利用碳纳米管体系在近红外的吸收并将之转化为热能的特性,结合PSeD的细胞毒性,探索了其抑制三阴乳腺癌MDA-MB-231细胞的增殖、侵袭、转移及相关分子机制。功能化修饰的碳纳米管体系能够在肿瘤微环境中更多的聚集,从而增加进入肿瘤细胞的量,而AE105能够选择性与肿瘤细胞膜上的uPAR结合,从而识别肿瘤细胞。当PSeD@MPPTA-AE105进入肿瘤细胞后,在808 nm激光的照射下,碳纳米管迅速升温,而负载的PSeD由于升温后分子间剧烈的运动,从材料上脱落,当温度升到42℃及以上时,导致癌细胞死亡,而对于已侵袭、转移的细胞,由PSeD发挥后续的杀灭作用。相关的分子机制研究显示:PSeD@MPPTA-AE105在808 nm激光照射下,引起胞内ROS累积,从而引起与DNA损伤相关蛋白ATM,P-His,P-Chk1,P-Chk2和BRCA1的过度表达,继而激活p53通路和MAPKs信号通路,进一步激活Caspase级联反应,最后促使细胞凋亡;同时,PSeD@MPPTA-AE105抑制FAK及不同位点磷酸化FAK蛋白的表达,激活了MMPs和uPA蛋白,并下调了uPA,uPAR和MMP-2/-9的表达水平,同时上调了TIMP-1(金属蛋白酶抑制剂)的表达水平,最终抑制MDA-MB-231细胞的侵袭和转移。PSeD@MPPTA-AE105在光热治疗和化学治疗结合上取得了有效的结果,将进一步探索其在动物水平的抗肿瘤作用。
[Abstract]:Carbon nanotubes have special structure characteristics, is widely used in electrochemistry, mechanical properties, biological medicine research field. Because of its large specific surface area, adsorption or covalent bond with a higher degree of most molecules, and physical properties such as strong absorption in the near infrared, can be used in photothermal therapy, based on this, we use the characteristics carbon nanotubes with different modifiers, the functional surface of the load, and the different anti-tumor drugs, and studied the antitumor activity and mechanism of combination of photothermal therapy and chemotherapy. The main contents are as follows: Study on the mechanism of proliferation of C6 glioma cells to inhibit 1. biotin targeting system carbon nanotubes. This chapter with biotin (Biotin) functionalized multiwalled carbon nanotubes, prepared with specific recognition of tumor cells by Biotin@MWCNTs/Oxa MTT method showed that the screening system. It can effectively inhibit the proliferation of C6 cells. Furthermore, Biotin can specifically recognize tumor cells on the membrane of biotin receptor, can significantly increase the drug accumulation in tumor cells. At the same time, Biotin@MWCNTs/Oxa can be mediated by the receptor and actin, clathrin, endocytosis of lipid raft mediated by protein into cells and, in the lysosomal release, caused by excessive ROS, causing DNA damage, compared the antitumor activity and mechanism of the proliferation of.2. target and inhibit C6 cells to single walled carbon nanotubes and multi walled carbon nanotubes targeting drug delivery system. This chapter through the function of RGD-c surface modification of SWCNTs system and MWCNTs system, and from the A comparison of the differences between the two aspects, such as drug loading rate, safety, selectivity, drug release rate and molecular mechanism of.SWCNTs system in the drug loading rate, the drug release rate and cell with selective absorption Have a comparative advantage, the reason is the SWCNTs system of greater surface area. But in anti-tumor activity, comparing the different normal cells under the safety factor, SWCNTs system and MWCNTs system have their own advantages. Flow cytometry analysis showed that DOX@SWCNTs-F127-RGD and DOX@ MWCNTs-F127-RGD are active and the mechanism of antitumor research drug delivery system in thermal chemotherapy induced apoptosis and G0/G1 phase arrest of MCF-7 cell death induced by.3. functionalized multi walled carbon nanotubes. The contents of this chapter is to design and pH response of three block polymer and AE105 dual targeting peptide modified carbon nanotube system prepared organic selenium compounds PSeD and loaded with water soluble poor as anticancer drugs. The use of carbon nanotube system in near infrared absorption and converted into heat energy characteristics, combined with the cytotoxicity of PSeD, explore its inhibition of three negative breast MDA-MB-231 cancer cell proliferation, invasion, metastasis and related molecular mechanism. The functionalized carbon nanotube system can gather more in the tumor microenvironment, thereby increasing the amount of tumor cells into AE105, and can selectively and tumor cell membrane uPAR binding, thereby identifying tumor cells. When PSeD@MPPTA-AE105 into tumor cells. In the 808 nm laser irradiation, carbon nanotubes and rapid warming, the load of the PSeD due to heating after intermolecular strenuous exercise, detached from the material, when the temperature rose to 42 degrees or more, resulting in cancer cell death, for invasion, metastasis of cells by PSeD. Study on the killing effect of subsequent play the molecular mechanism showed that PSeD@MPPTA-AE105 in the 808 nm laser irradiation caused by intracellular ROS accumulation, causing the associated protein ATM, P-Chk1, P-His and DNA damage, over expression of P-Chk2 and BRCA1, then activate The p53 pathway and MAPKs pathway, and further activate the Caspase cascade, finally induce apoptosis; at the same time, the expression of PSeD@MPPTA-AE105 and inhibition of FAK in different sites of phosphorylation of FAK protein, activation of MMPs and uPA protein, and down-regulation of uPA expression levels of uPAR and MMP-2/-9, and upregulation of TIMP-1 (inhibitor of metalloproteinase expression) finally, the inhibition of MDA-MB-231 cell invasion and metastasis of.PSeD@MPPTA-AE105 effectively results in the combination of heat treatment and chemical treatment, will further explore its antitumor effect in animal level.
【学位授予单位】:暨南大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:R91;R96
【相似文献】
相关会议论文 前6条
1 ;Expression of ICAM-1 and VCAM-1 in RAECs after SWCNTs Exposure[A];第十届中国科协年会论文集(三)[C];2008年
2 Huey Hoon Hng;;High-Power and High-Energy-Density Flexible Pseudocapacitor Electrodes Made from Porous CuO Nanobelts and SWCNTs[A];2011中国材料研讨会论文摘要集[C];2011年
3 杨鹏;刘春华;李红波;李清文;;通过双水相法分离不同性质的HiPCO-SWCNTs[A];中国化学会第29届学术年会摘要集——第30分会:低维碳材料[C];2014年
4 李慧慧;张志凌;庞代文;;阿霉素在DNA-SWCNTs加合物和聚赖氨酸组装的玻碳电极上的电化学行为[A];中国化学会第十四届有机分析及生物分析学术研讨会会议论文摘要集[C];2007年
5 ;Curvature Structures and Chemical Anisotropies of Carbon Nanotubes and Fullerenes[A];中国化学会第五届全国结构化学学术会议论文摘要集[C];2007年
6 ZHANG Yong-bin;William SALMINEN;SHI Qiang;YANG Xi;Yvonne JONES;Paul HOWARD;;Characterizations in nanotoxicology and nanomedicine development:A regulatory perspective[A];中国毒理学会第六届全国毒理学大会论文摘要[C];2013年
相关博士学位论文 前1条
1 任琼琼;基于微电极的生物体系内过氧化氢等活性分子的传感检测技术[D];华中科技大学;2015年
相关硕士学位论文 前10条
1 杨晓敏;基于HA修饰的SWCNTs用于诊断治疗的还原敏感性药物传递体系[D];郑州大学;2016年
2 汪妮;靶向碳纳米管载药体系的功能化设计及抗肿瘤活性、光热治疗的研究[D];暨南大学;2016年
3 刘岩磊;单壁纳米管对线粒体电子传递体系功能的影响[D];中南大学;2013年
4 杨鹏;基于不同方法的单壁碳纳米管选择性分离[D];合肥工业大学;2015年
5 张玉琼;Pluronic/SWCNTs对小肠P-gp药泵抑制作用的研究[D];河南中医学院;2015年
6 张静;金属性和半导体性单壁碳纳米管的分离技术研究[D];江南大学;2011年
7 欧阳雨;单壁碳纳米管的化学气相沉积法制备及其拉曼光谱研究[D];首都师范大学;2005年
8 阚侃;NO在碳纳米管修饰电极上的电氧化研究[D];黑龙江大学;2009年
9 刘旭东;单壁碳纳米管对昆明小鼠认知能力以及自主移动能力的影响[D];华中师范大学;2014年
10 葛敏;碳纳米管及其金属复合材料拉伸行为的分子动力学模拟[D];天津大学;2009年
,本文编号:1375877
本文链接:https://www.wllwen.com/yixuelunwen/yiyaoxuelunwen/1375877.html