当前位置:主页 > 医学论文 > 药学论文 >

调控mTOR信号通路对癫痫的作用及其机制研究

发布时间:2018-05-08 08:34

  本文选题:雷帕霉素 + mTOR信号通路 ; 参考:《浙江大学》2016年博士论文


【摘要】:mTOR(mammalian target of rapamycn)信号通路是一条调节蛋白质合成、细胞生长、增殖等的信号通路。以往研究表明,mTOR信号通路参与了红藻氨酸(Kainic Acid,KA)诱导的大鼠癫痫的发生,并导致一系列癫痫后病理变化。雷帕霉素(Rapamycin)是mTOR信号通路特异性抑制剂,能够抑制mTOR信号通路的异常激活,并改善癫痫后病理变化以及减少自发性癫痫的产生,从而发挥潜在的抗癫痫作用。因此,在我们的研究中,我们探讨了雷帕霉素给药在正常SD大鼠以及KA诱发癫痫模型大鼠中对mTOR信号通路的作用。同时,构建条件性敲除神经前体细胞Rptor基因的小鼠,探讨敲除雷帕霉素作用靶点Raptor蛋白后对癫痫及并发症的影响,以明确mTOR信号通路在癫痫调控中的作用。第一章雷帕霉素对mTOR信号通路的矛盾性作用目的:前期研究发现,在KA诱导癫痫模型中提前较短时间给予雷帕霉素,更严重地激活以S6蛋白磷酸化为检测指标的mTOR信号通路,这与雷帕霉素对mTOR信号通路的抑制性作用相矛盾。因此,本研究拟在正常SD大鼠及KA诱导的SD大鼠癫痫模型中对雷帕霉素的矛盾性作用进行更详细的研究,明确雷帕霉素对mTOR信号通路及癫痫的作用。方法::在正常SD大鼠中给予单次不同剂量(0.3,1,3,1Omg/kg)的雷帕霉素以及给予单次单一剂量雷帕霉素(3mg/kg)作用不同时间点(1,3,6,15,24h),以确定雷帕霉素的量效与时效关系。同时,在KA诱导急性癫痫发作前,不同时间(1,3,6,15,24h)给予雷帕霉素以及雷帕霉素给药后急性癫痫发作不同时间(1,3,6,15,24h),检测S6蛋白磷酸化,以探讨雷帕霉素对癫痫mTOR信号通路的作用。另外,监测雷帕霉素不同时间(1,10h)给药后癫痫症状以及癫痫后神经细胞死亡,探讨雷帕霉素矛盾性作用的影响。最后,检测mTOR信号通路中Akt,Raptor,Rictor,S6k,S6蛋白磷酸化,以及给予Akt抑制剂哌立福辛(Perifosine),探讨雷帕霉素矛盾性作用的可能机制。结果:1.在正常SD大鼠中,提前3-24小时给予雷帕霉素能够抑制S6蛋白磷酸化,并呈剂量依赖性,而提前1小时给予雷帕霉素反而矛盾性增加了 S6蛋白磷酸。2.在KA诱导的急性癫痫模型中,提前10小时给予雷帕霉素,能够抑制癫痫导致mTOR信号通路的激活,而提前1-6小时给予雷帕霉素,反而矛盾性加重了癫痫导致mTOR信号通路的激活。3.提前1小时给予雷帕霉素,加重了癫痫的严重程度、癫痫持续时间及神经细胞死亡,而提前10小时给予雷帕霉素,对癫痫症状没有影响,但是可以减少神经元死亡。4.雷帕霉素对S6蛋白磷酸化的矛盾性作用与上游mTOR信号通路相关,并且,提前给予Akt抑制剂哌立福辛能够逆转雷帕霉素对S6磷酸化的矛盾性作用。结论:短时间给予雷帕霉素诱导了 S6蛋白激活,废除了雷帕霉素的抗癫痫作用。雷帕霉素对mTOR通路的调节具有高度复杂性,其原因可能与上游信号通路相关。第二章选择性敲除神经前体细胞中Rptor基因敲除对mTOR信号通路的作用目的:Raptor蛋白是mTOR信号通路中mTOR激酶调节相关蛋白,由Rptor基因编码。前期研究提示我们mTOR信号通路在癫痫发生中具有重要作用。为了探讨Raptor蛋白在癫痫及癫痫导致的相关疾病中的作用,我们制备在神经前体细胞中敲除Rptor的条件性敲除小鼠,以明确Raptor蛋白的作用。方法:构建条件性敲除神经前体细胞Rptor基因小鼠,对基因敲除小鼠外观及发育进行观察。同时,观察在正常情况及红藻氨酸(Kainic acid,KA)致痫后,基因敲除小鼠mTOR信号通路的改变及癫痫状态。FJB染色和TIMM染色分别观察KA致痫后基因敲除小鼠脑神经细胞死亡情况和苔藓纤维发芽情况,并EEG记录致痫后基因敲除小鼠自发性癫痫频率。最后,水迷宫实验,旷场实验和兴奋性实验观察小鼠行为学变化。结果:1.Rptor基因敲除小鼠(Rptor CKO mice)在外观与对照小鼠没有区别,并且Rptor基因敲除后,mTORC1信号通路被抑制。2.Rptor基因敲除小鼠脑重及体重比对照小鼠低,并且大脑上皮层神经元厚度减少。3.KA诱导癫痫后,KA导致的mTOR信号通路过度激活得到抑制,但Rptor基因敲除小鼠癫痫状态与对照小鼠没有明显差异。4.在Rptor基因敲除小鼠中,存在极少次数的自发性癫痫,且癫痫导致的苔藓纤维发芽得到改善。5.Rptor基因敲除小鼠在一定程度能够减少KA导致的认知障碍,减少焦虑行为及过度兴奋性。结论:尽管在神经前体细胞细胞中敲除了Rpto 基因后使小鼠早期发育受到影响,但在癫痫并发症及癫痫后行为中都得到一定改善。同时,也提示我们Raptor蛋白在癫痫及mTOR信号通路中有非常重要的作用。
[Abstract]:MTOR (mammalian target of rapamycn) signal pathway is a signal pathway that regulates protein synthesis, cell growth and proliferation. Previous studies have shown that mTOR signaling pathway participates in the occurrence of kainic acid (Kainic Acid, KA) induced rat epilepsy and causes a series of post epileptic pathological changes. Rapamycin (Rapamycin) is a mTOR signaling pathway. Road specific inhibitors can inhibit abnormal activation of mTOR signaling pathway, improve post epileptic pathological changes and reduce spontaneous epilepsy, and thus play a potential antiepileptic effect. Therefore, in our study, we explored the mTOR signal of rapamycin in normal SD rats and rats induced by KA induced epilepsy model. The role of the pathway. At the same time, a conditioned mouse knockout of the Rptor gene of the neural precursor cells was constructed to explore the effects of the knockout of the target Raptor protein on the epilepsy and the complications in order to clarify the role of the mTOR signaling pathway in the regulation of epilepsy. At present, rapamycin is given in the KA induced epileptic model in a shorter time and more seriously activates the mTOR signaling pathway with the S6 protein phosphorylation as the detection index, which is contradictory to the inhibitory effect of rapamycin on the mTOR signaling pathway. Therefore, this study is intended to be used in the normal SD rats and the KA induced SD rat model of the epileptic model of rapamycin. The effect of rapamycin on mTOR signaling pathway and epilepsy was studied in a more detailed study. Methods: in normal SD rats, a single dose of rapamycin (0.3,1,3,1Omg/kg) and a single single dose of rapamycin (3mg/kg) were given at different time points (1,3,6,15,24h) to determine the dose effect and time of rapamycin. At the same time, before KA induced acute epileptic seizures, different time (1,3,6,15,24h) was given to the acute seizures of rapamycin and rapamycin at different time (1,3,6,15,24h), and S6 protein phosphorylation was detected to explore the effect of rapamycin on the epileptic mTOR signaling pathway. In addition, the monitoring of rapamycin at different times (1,10h) was administered. The effects of rapamycin on the paradoxical effects of rapamycin were investigated. Finally, the possible mechanism of the paradoxical effect of rapamycin was explored in the mTOR signaling pathway Akt, Raptor, Rictor, S6k, S6 protein phosphorylation and Akt inhibitor piperinine (Perifosine). Results: 1. in normal SD rats, 3-24 Rapamycin was given to inhibit the phosphorylation of S6 protein in a dose dependent manner, while rapamycin was given 1 hours earlier, paradoxically increasing the S6 protein phosphoric acid.2. in the KA induced acute epilepsy model, and giving rapamycin 10 hours ahead of time, which could inhibit the activation of the mTOR signaling pathway by epilepsy and give thunder 1-6 hours ahead of time. Paradoxically, the paradoxical aggravation of epilepsy caused the activation of the mTOR signaling pathway to the activation of.3. 1 hours ahead of rapamycin, aggravating the severity of the epilepsy, the duration of epilepsy and the death of the nerve cells, and giving rapamycin 10 hours earlier, which did not affect the symptoms of epilepsy, but could reduce the neuronal death of.4. rapamycin to S6 eggs. The contradictory effect of white phosphorus acidification is related to the upstream mTOR signaling pathway, and the early administration of the Akt inhibitor piperinine can reverse the contradictory effect of rapamycin on S6 phosphorylation. Conclusion: short time rapamycin induced the activation of S6 protein and the antiepileptic effect of rapamycin. The regulation of rapamycin on the mTOR pathway There is a high degree of complexity, which may be associated with the upstream signal pathway. Second chapter second selectively knocks off the mTOR signaling pathway in the neural precursor cells: the Raptor protein is the mTOR kinase regulation related protein in the mTOR signaling pathway, and the Rptor gene is encoded. Earlier studies suggest that our mTOR signaling pathway is in epilepsy. In order to explore the role of Raptor protein in epilepsy and epilepsy related diseases, we prepare Rptor conditioned knockout mice in neural precursor cells to clarify the role of Raptor protein. Methods: to construct a conditioned knockout neural precursor cell Rptor gene mouse, and to develop the appearance and hair of the gene knockout mice. At the same time, we observed the changes in the mTOR signaling pathway in the gene knockout mice and the.FJB staining and TIMM staining in the epileptic state after epilepsy in normal conditions and Kainic acid (KA), and in the epileptic state.FJB staining and TIMM staining, respectively, to observe the brain cell death and the moss fiber germination of the gene knockout mice after KA induced epilepsy, and EEG to record the gene knockout after epilepsy. The frequency of spontaneous epileptic rats. Finally, the water maze test, open field experiment and excitatory experiment were used to observe the behavioral changes in mice. Results: the appearance of 1.Rptor gene knockout mice (Rptor CKO mice) was not different from that of the control mice, and the mTORC1 signaling pathway was suppressed by the mTORC1 signaling pathway and the brain weight and weight of the.2.Rptor knockout mice were smaller than those of the control. Rats were low, and the thickness of the neurons in the epithelial layer of the brain was reduced by.3.KA induced epilepsy. The overactivation of the mTOR signaling pathway caused by KA was inhibited, but there was no significant difference between the epileptic state of the Rptor knockout mice and the control mice. In the Rptor gene knockout mice, there were few spontaneous epileptic seizures, and the moss fiber germinated by epilepsy. The improvement of.5.Rptor gene knockout mice to some extent can reduce the cognitive impairment caused by KA and reduce anxiety behavior and excitability. Conclusion: Although the knockout of the Rpto gene in the neurons of the neural progenitor cells has been affected by the early development of the mice, there are some improvements in the epileptic complications and after epilepsy. It also suggests that Raptor protein plays a very important role in epilepsy and mTOR signaling pathway.

【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R965

【相似文献】

相关期刊论文 前10条

1 韩莹;史道华;;中药抑制血管平滑肌细胞增殖的新途径—mTOR[J];海峡药学;2005年06期

2 邹金凯;车宁;孙春华;;mTOR功能及其抑制剂研究进展[J];现代肿瘤医学;2008年10期

3 陈莉君;史道华;;mTOR结合蛋白的研究进展[J];现代肿瘤医学;2012年11期

4 陈j,张红锋;mTOR信号通路与癌症治疗[J];生命的化学;2005年02期

5 朱伦;陈增良;;mTOR的结构与功能[J];国际病理科学与临床杂志;2006年01期

6 ;Expression of mTOR/P70 S6K in oral acinic cell carcinoma[J];Journal of Microbiology and Immunology;2007年01期

7 李刚;闫若东;穆中一;黄炎;胡滨;;mTOR对非激素依赖性前列腺癌的作用研究[J];肿瘤学杂志;2013年12期

8 韩莹;史道华;;雷帕霉素作用与mTOR结构关系的研究进展[J];解放军药学学报;2006年04期

9 刘旭;张东亮;刘文虎;;mTOR抑制剂治疗常染色体显性多囊肾病的研究进展[J];中国全科医学;2010年20期

10 张超;章雄文;丁健;;Akt-mTOR的互动与癌症的发生[J];生命科学;2007年01期

相关会议论文 前10条

1 Huayong Zhou;Yi Wang;Lanping Ma;Xin Wang;Lin Chen;Yi Chen;Jian Ding;Tao Meng;Linhua Meng;Jingkang Shen;;Novel indazole-based derivatives as PI3K/mTOR dual inhibitors[A];2012长三角药物化学研讨会论文集[C];2012年

2 ;Activation of mTOR Pathway Confers Adverse Outcome in Nonsmall Cell Lung Carcinoma[A];中华医学会第五届全国胸部肿瘤及内窥镜学术会议论文汇编[C];2011年

3 韩进松;陈颖;宋云龙;吕加国;周有骏;朱驹;;Structure-Based Design,Synthesis,and Antitumor Activities of Novel Water-soluble Dual Inhibitors of PI3K and mTOR[A];2012长三角药物化学研讨会论文集[C];2012年

4 姜伟;王修启;束刚;江青艳;杨舟;;mTOR信号通路及其对骨骼肌蛋白质合成的影响[A];全国动物生理生化第十一次学术交流会论文摘要汇编[C];2010年

5 管坤良;;The TSC-mTOR pathway in cell growth and cancer[A];2009医学前沿论坛暨第十一届全国肿瘤药理与化疗学术会议论文集[C];2009年

6 Hai Huang;Xin Liu;;The molecular mechanism of apoptosis in human gastric cancer SGC-7901 cells induced by evodiamine inhibition mTOR signal pathway[A];中国生物化学与分子生物学会第十届会员代表大会暨全国学术会议摘要集[C];2010年

7 孟祥斐;郁金泰;谭兰;;靶向作用于mTOR治疗癫痫[A];山东省2013年神经内科学学术会议暨中国神经免疫大会2013论文汇编[C];2013年

8 曾军英;胡兴;皮建辉;;Cytotoxic Elimination of Chemoresistant Pancreatic Cancer Stem Cells by Combined Inhibition of RON and mTOR Signaling Pathways[A];湖南省生理科学会2013年度学术年会论文摘要汇编[C];2013年

9 ;mTOR enhancement of STIM1-mediated store-operated Ca~(2+) signaling constrains tumor development[A];第九届全国钙信号和细胞功能研讨会论文摘要集[C];2012年

10 ;mTOR.rictor Is Required by the Development of Mouse One-cell Stage Embryos[A];第九届全国酶学学术讨论会暨邹承鲁诞辰85周年纪念会论文摘要集[C];2008年

相关重要报纸文章 前2条

1 驻京记者 李瑶;mTOR提供癌症治疗新思路[N];医药经济报;2010年

2 本报记者 白毅;mTOR信号通路为肿瘤治疗提供新靶点[N];中国医药报;2010年

相关博士学位论文 前10条

1 刘伦志;肾素抑制剂对高糖诱导足细胞凋亡与mTOR表达的影响[D];武汉大学;2014年

2 李舒展;PGAM1在mTOR诱导肿瘤有氧糖酵解中的作用及机制研究[D];天津医科大学;2015年

3 丛江琳;MiR-634通过调控mTOR信号途径抑制宫颈癌细胞增殖及诱导凋亡的实验研究[D];山东大学;2015年

4 胡越;mTOR和细胞自噬在LPS诱导的急性肺损伤中分子调控机制的研究[D];浙江大学;2016年

5 陈玲琳;调控mTOR信号通路对癫痫的作用及其机制研究[D];浙江大学;2016年

6 黄畅;基于mTOR信号通路探讨艾灸及艾烟对APP/PS1双转基因小鼠认知障碍的影响及机制研究[D];北京中医药大学;2017年

7 苗丽君;慢病毒介导的mTOR靶向抑制对肺腺癌A549细胞生物学功能的影响[D];郑州大学;2012年

8 曾梅;自我吞噬及mTOR信号在小鼠神经瘤细胞分化过程中的作用[D];中国科学技术大学;2008年

9 周乐杜;PI3K/Akt/mTOR信号通路在肝细胞癌发病机制中的作用及靶向干预研究[D];中南大学;2010年

10 张慧;蛋白摄入水平对早产学习认知能力及mTOR/S6K通路的影响[D];南方医科大学;2013年

相关硕士学位论文 前10条

1 闫斌;血清mTOR检测对消化系统恶性肿瘤患者的临床意义[D];内蒙古大学;2012年

2 王艮波;mTOR通路在氯化亚铁诱导的外伤性癫痫大鼠模型额叶皮质及海马中的表达研究[D];福建医科大学;2015年

3 罗荣奎;肝脏血管平滑肌脂肪瘤的临床病理特征及mTOR通路分析[D];复旦大学;2014年

4 顾兵;脑出血后mTOR信号通路激活及雷帕霉素脑保护作用机制研究[D];苏州大学;2015年

5 张剑;食管鳞状细胞癌中mTOR表达及其与癌症恶性程度和患者机体免疫反应水平相关性研究[D];青岛大学;2015年

6 万火福;胰岛素通过mTOR信号通路对鹅肝细胞体外增殖的调控研究[D];四川农业大学;2014年

7 周璇;mTOR信号通路在小鼠B淋巴细胞成熟及抗体产生中的作用及其机制[D];南方医科大学;2014年

8 杨雪帆;慈菇多糖对小鼠免疫功能及mTOR信号通路的影响[D];福建医科大学;2015年

9 夏传友;组蛋白甲基化酶SMYD3在前列腺癌中mTOR通路的机制研究[D];山东大学;2016年

10 王嘉祯;食管鳞癌细胞中LSD1与mTOR通路相互调控作用研究[D];郑州大学;2016年



本文编号:1860701

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/yiyaoxuelunwen/1860701.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3ff54***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com