PARP抑制剂生物标志物和耐药特性与机制研究
本文选题:PARP抑制剂 + HR ; 参考:《南昌大学》2017年硕士论文
【摘要】:BRCA1/2是目前临床应用最为广泛的聚腺苷二磷酸核糖聚合酶(poly(ADP-ribose)polymerase,PARP)抑制剂生物标志物。然而对BRCA1/2突变的肿瘤患者,PARP抑制剂的的临床有效率仅为30%~50%,意味着过半携带BRCA缺陷的患者仍面临着该类药物的无效治疗。探索发现新的疗效预测标志物或标志物组合,可用以增加PARP抑制剂临床治疗的成功率。本研究发现53BP1联合BRCA1可作为预测PARP抑制剂敏感性的生物标志物。在比较四种同源重组(homologous recombination,HR)相关基因的mRNA水平和PARP抑制剂敏感性的基础上,我们选取BRCA1缺陷的乳腺癌细胞MDA-MB-436作为工具细胞株,进行RNA干扰实验。发现只有降低53BP1表达,才影响细胞对PARP抑制剂的敏感性。接着我们构建了53BP1-/-/BRCA1-/-双缺陷细胞株,发现其Simmiparib的IC50是亲本细胞的36.7倍,表明敲除53BP1会导致PARP抑制剂耐药。53BP1缺失也减少了PARP抑制剂诱导的细胞周期阻滞和凋亡,并部分恢复了HR修复功能。更重要的是,敲除53BP1减弱了PARP抑制剂对裸鼠移植瘤的生长抑制作用。在双缺陷的细胞中再表达53BP1,可以恢复PARP抑制剂的敏感性,并恢复HR相关因子至正常水平。由于超过10%的BRCA1突变的乳腺癌和卵巢癌病人不表达53BP1,因此上述发现提示将53BP1和BRCA1作为生物标志物组合用于患者选择中,有可能减少PARP抑制剂的无效治疗。BRCA1/2缺陷的细胞因HR修复功能异常,对PARP抑制剂敏感。虽然PARP抑制剂对BRCA1/2突变的肿瘤可能有效,但最终仍会面临耐药的产生,从而限制其应用。由于PARP抑制剂临床应用时间短,对其耐药特性和机制了解还十分有限。为了深入研究PARP抑制剂的耐药特点和机制,我们以MDA-MB-436细胞为模型,采用梯度递增法构建了四种PARP抑制剂耐药单克隆细胞株。这些耐药株对同类PARP抑制剂明显耐药,也对DNA交联剂和拓扑异构酶Ι抑制剂交叉耐药。另外,PARP抑制剂几乎不影响耐药株的周期分布和细胞凋亡。我们采用特异性抗体研究发现耐药株表达截短型的N-端BRCA1蛋白,提示PARP抑制剂的耐药机制与BRCA1发生继发性突变导致HR修复功能部分恢复相关。
[Abstract]:BRCA1/2 is the most widely used biomarker of polyadenosine diphosphate polymerase (BRCA1/2) inhibitor. However, the clinical efficacy of BRCA1/2 inhibitor in patients with BRCA1/2 mutation is only 30%, which means that more than half of the patients with BRCA deficiency still face the ineffective treatment of the drug. To explore new prognostic markers or combination of markers, which can be used to increase the success rate of clinical treatment of PARP inhibitors. In this study, we found that 53BP1 combined with BRCA1 can be used as a biomarker for predicting the sensitivity of PARP inhibitors. On the basis of comparing the mRNA level and the sensitivity of PARP inhibitor of four homologous recombination genes, we selected BRCA1 deficient breast cancer cell line MDA-MB-436 as the tool cell line and carried out RNA interference test. It was found that the sensitivity of cells to PARP inhibitors was affected only when the expression of 53BP1 was reduced. Then we constructed 53BP1-r BRCA1-r-double defective cell line and found that the IC50 of Simmiparib was 36.7 times that of parent cells, suggesting that knockout of 53BP1 led to the deletion of PARP inhibitor resistance. 53BP1 also reduced cell cycle arrest and apoptosis induced by PARP inhibitor. HR repair function was partially restored. More importantly, knockout of 53BP1 attenuates the growth inhibition of PARP inhibitors on xenografts in nude mice. The expression of 53BP1 in double deficient cells could restore the sensitivity of PARP inhibitor and restore HR related factors to normal level. Since more than 10% of breast and ovarian cancer patients with BRCA1 mutations do not express 53BP1, the findings suggest that 53BP1 and BRCA1 are combined as biomarkers for patient selection. Cells that may reduce ineffective treatment of PARP inhibitors. BRCA 1 / 2 defect are sensitive to PARP inhibitors because of abnormal HR repair function. Although PARP inhibitors may be effective against BRCA1/2 mutated tumors, they may eventually face the production of drug resistance, limiting their use. Due to the short clinical application time of PARP inhibitors, their resistance characteristics and mechanisms are still very limited. In order to study the characteristics and mechanism of drug resistance of PARP inhibitors, four PARP inhibitor resistant monoclonal cell lines were constructed using MDA-MB-436 cell model and gradient increasing method. These resistant strains were significantly resistant to similar PARP inhibitors and cross-resistant to DNA crosslinking agents and topoisomerase I inhibitors. In addition, PARP inhibitors have little effect on cell cycle distribution and apoptosis. The expression of truncated N- terminal BRCA1 protein was detected by specific antibody analysis, suggesting that the mechanism of drug resistance of PARP inhibitor is related to the partial recovery of HR repair function due to secondary mutation of BRCA1.
【学位授予单位】:南昌大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R979.1
【相似文献】
相关期刊论文 前10条
1 Alisa Opar;海燕;;PARP抑制剂或成抗癌新星[J];中国处方药;2009年07期
2 黄河;曹阳;吴英理;阎骅;;PARP抑制剂联合化疗药物治疗恶性肿瘤的研究进展[J];肿瘤;2013年04期
3 韩炜;钟俊;王永峰;王国成;尤启冬;;PARP抑制剂用于肿瘤治疗的研究进展[J];中国新药杂志;2011年12期
4 郭伟;张木勋;;PARP抑制剂对早期糖尿病大鼠肾脏的保护作用[J];中国医师杂志;2006年05期
5 丁焕;孙颖;黎晓晴;黎莉;;PARP抑制剂联合吉西他滨或多西他赛对雄激素非依赖性前列腺癌PC3细胞增殖的影响[J];山东大学学报(医学版);2014年01期
6 王书博;潘文婧;李委佳;刘巍;谭文华;;PARP抑制剂在上皮性卵巢癌中的研究进展[J];中国优生与遗传杂志;2012年09期
7 刘志学;;默克与百济神州再度携手 双方在京签署PARP抑制剂全球共同开发和商业化协议[J];中国医药导报;2013年34期
8 郭伟;张木勋;;PARP抑制剂对糖尿病大鼠早期神经病变的影响[J];天津医药;2006年10期
9 秦艳;王娅兰;李圆圆;;PARP抑制剂对小鼠结肠腺癌CT26细胞肝转移的影响[J];第三军医大学学报;2008年14期
10 马强;郝吉庆;;PARP抑制剂对非小细胞肺癌A549及H460细胞增殖及凋亡的影响[J];现代肿瘤医学;2013年04期
相关博士学位论文 前1条
1 谢江娇;PARP抑制剂延缓高同型半胱氨酸血症诱导ApoE-/-小鼠动脉粥样硬化斑块进展[D];华中科技大学;2009年
相关硕士学位论文 前10条
1 杨忠敏;PARP抑制剂生物标志物和耐药特性与机制研究[D];南昌大学;2017年
2 骆佳艳;PARP抑制剂在AR阳性三阴性乳腺癌细胞增殖中的作用[D];南京大学;2016年
3 王威;PARP抑制剂经NF-κB/MMP-9通路减轻蛛网膜下腔出血后的早期脑损伤[D];浙江大学;2016年
4 詹靓靓;PARP抑制剂对乏氧食管鳞癌细胞系放射增敏作用的研究[D];南京医科大学;2015年
5 张文婷;PARP抑制剂的设计、合成与神经保护活性研究[D];华中科技大学;2007年
6 彭媛青;PARP抑制剂治疗卵巢癌疗效及安全性的Meta分析[D];南昌大学;2017年
7 张炎如;PARP抑制剂对复发性上皮性卵巢癌治疗效果的Meta分析[D];山西医科大学;2017年
8 王哲;PARP抑制剂对卵巢癌C13*细胞增殖、侵袭的影响及其机制探讨[D];山东大学;2013年
9 余芳;PARP抑制剂在阿霉素诱导的多发性骨髓瘤细胞自噬发生中的功能研究[D];第四军医大学;2011年
10 郭伟;PARP抑制剂对糖尿病大鼠早期神经病变的影响[D];华中科技大学;2006年
,本文编号:1981984
本文链接:https://www.wllwen.com/yixuelunwen/yiyaoxuelunwen/1981984.html