噻二唑类组蛋白去乙酰化酶抑制剂的结构修饰与改造
本文选题:组蛋白去乙酰化酶(HDAC) + HDAC抑制剂 ; 参考:《山东大学》2014年博士论文
【摘要】:组蛋白的乙酰化和去乙酰化修饰是表观遗传学研究中重要的研究领域,主要是通过组蛋白乙酰基转移酶(histone acetyltraqsferase, HAT)和组蛋白去乙酰化酶(histone deacetylase, HDAC)共同调控的。其中组蛋白去乙酰化反应由HDAC催化,该酶主要包括Zn2+依赖性的和NAD+依赖性的两种类型。其中Zn2+依赖性的HDAC在许多癌症类型中表达异常,并与肿瘤的发生和发展密切相关。HDAC的小分子抑制剂能够导致肿瘤细胞凋亡、分化、生长抑制和血管生成抑制。目前vorinostat(suberoylanilide hydroxamic acid, SAHA)和romidepsin已被FDA批准上市用于治疗皮肤T细胞淋巴瘤(cutaneous T cell lymphoma, CTCL),并有多种HDAC抑制剂在临床试验阶段对血液瘤显示良好的治疗效果。因此HDAC抑制剂已成为抗肿瘤药物的重要研究领域。 根据HDAC2与SAHA的共晶结合方式,HDAC抑制剂包含Zn2+螯合基团(ZBG)、连接区域(Linker)和酶表面识别区域(Cap)等三个部分。在前期工作中我们设计合成了一系列噻二唑类HDAC抑制剂,其中化合物6m具有与SAHA相当的抑酶活性。初步生物活性研究发现6m对10种肿瘤细胞的增值抑制作用也与SAHA相当,还能够引起肿瘤细胞凋亡、抑制肿瘤迁移并产生细胞周期抑制。为进一步提高抗肿瘤活性,我们从以下三个方面对噻二唑类HDAC抑制剂进行结构修饰和改造:第一,根据前期构效关系研究,Linker区域相对固定,一方面在噻二唑环5-位苯基上引入取代基得到A系列化合物,另一方面根据药物设计学的生物电子等排原理,以萘环、吡啶环、呋喃环和噻吩环等替代苯基得到B系列化合物;第二,根据HDAC抑制剂的临床研究进展,用对癌症显示疗效生物2-氨基苯胺甲酰基、N-羟基苯甲酰胺基和N-羟基肉桂酰胺基等Zn2+螯合基团替代异羟肟酸基得到C系列化合物;第三,考虑到Cap区1,3,4-噻二唑杂环可被其它杂环替换,根据生物电子等排原理将噻二唑改为噻唑和吡唑杂环得到D系列化合物。 在目标化合物的合成中,A和B系列化合物以芳基甲酸为原料,以三氯氧磷为脱水剂经一锅法反应生成1,3,4-噻二唑衍生物,后与庚二酸单甲酯或辛二酸单甲酯缩合得到含噻二唑杂环的羧酸酯,最后异羟肟酸化得到目标化合物;在C系列化合物合成中,可水解已有的噻二唑杂环羧酸酯,所得羧酸与Boc保护邻苯二胺缩合,最后脱除Boc保护基得到化合物C1;其它目标化合物C2-C4的合成主要以不同原料合成含有1,3,4-噻二唑的羧酸酯,最后转化为异羟肟酸;D系列化合物的合成参考A系列和B系列合成方法,参照文献合成噻唑或毗唑杂环,再经缩合和异羟肟酸化制得。本论文共合成新化合物143个,其中包括新目标化合物71个和新中间体72个。所有新化合物的结构均经过核磁共振氢谱、碳谱或质谱等手段进行确证。 所有目标化合物均进行了初步生物活性评价。其中多数A系列化合物和B系列化合物的抑酶活性与SAHA相当甚至活性更高。A系列化合物的构效关系说明:(1)向噻二唑5位苯基引入位阻越小的取代基,抑酶活性越好;(2)苯环取代基一般以引入邻位取代的效果最好;(3)给电子取代基衍生物抑酶活性较吸电子取代显著增强。B系列化合物中除萘环取代使HDAC抑制活性明显下降甚至丧失外,吡啶环、呋喃环和噻吩环等芳杂环取代物的抑酶活性都与SAHA相当或高于SAHA。在抗肿瘤细胞增殖方面,A系列化合物的A31效果最好,对所选测的6株肿瘤细胞的抗增殖活性均高于6m和SAHA;B系列化合物中B12的抑瘤效果最好,活性与6m和SAHA相当。A系列和B系列化合物的抗增殖活性均显示,当Linker链长n=5时,对肿瘤细胞增殖的抑制活性不明显;n=6时显示相对较好的增殖抑制活性。 C系列化合物在活性评价中未达到相应异羟肟酸衍生物的抗增殖活性水平,其中N-羟基苯甲酰胺衍生物和N-羟基肉桂酰胺衍生物的抗增殖活性较6m和SAHA明显下降;2-氨基苯胺甲酰衍生物的抗增殖活性与6m和SAHA处于同一个数量级,但是没有达到6m和SAHA的活性水平。 将1,3,4-噻二唑基改造为噻唑基和吡唑基的D系列目标化合物(D1、D2和ID3)对所选用的10株肿瘤细胞均显示优良的抗增殖活性,且活性明显高于6m和SAHA。除了对K562慢性粒细胞白血病细胞系的活性提高明显外,对其它9株实体瘤细胞抑制效果均比6m和SAHA提高2-6倍。 综上所述,本论文针对噻二唑类HDAC抑制剂进行了深入的结构改造。相关构效关系研究表明,1,3,4-噻二唑环的5-位苯基引入邻位和位阻小的取代基有利于提高抑酶和抑瘤活性;将苯基替换为其它杂环或替换异羟肟酸基团均未发现抑瘤活性更高的化合物,有时还导致活性丧失。我们在研究中意外的发现,将噻二唑杂环替换为噻唑或吡唑的D系列目标化合物,其抗肿瘤活性较6m和SAHA大幅提高。针对该系列化合物的深入研究,将为今后发现高效、低毒的抗肿瘤药物提供新的方向。
[Abstract]:The acetylation and deacetylation modification of histone is an important research field in epigenetics, mainly through the co regulation of histone acetyltransferase (histone acetyltraqsferase, HAT) and histone deacetylase (histone deacetylase, HDAC), in which the histone deacetylation reaction is catalyzed by HDAC, the main package of this enzyme Including two types of Zn2+ dependent and NAD+ dependent, Zn2+ dependent HDAC expresses abnormality in many cancer types, and small molecular inhibitors of.HDAC, closely related to the occurrence and development of tumors, can lead to tumor cell apoptosis, differentiation, growth inhibition and angiogenesis inhibition. Currently, vorinostat (suberoylanilide hydroxamic a) CID, SAHA) and romidepsin have been approved by FDA for the treatment of T cell lymphoma of the skin (cutaneous T cell lymphoma, CTCL), and a variety of HDAC inhibitors have shown good therapeutic effects on hematoma in clinical trials. Therefore HDAC inhibitors have become an important research area of antitumor drugs.
According to the eutectic binding method of HDAC2 and SAHA, HDAC inhibitors include Zn2+ chelating group (ZBG), connection region (Linker) and enzyme surface identification region (Cap). In the previous work, we designed and synthesized a series of thiazolazole HDAC inhibitors, in which the compound 6m has the equivalent enzyme inhibition activity with SAHA. Preliminary biological activity studies have been made. The inhibitory effect of 6m on 10 tumor cells is also similar to that of SAHA. It can also induce tumor cell apoptosis, inhibit tumor migration and produce cell cycle inhibition. In order to further improve the antitumor activity, we repair and reconstruct the thiotriazole HDAC inhibitors from the following three aspects: first, according to the prophase structure-activity relationship study On the one hand, the Linker region is relatively fixed, on the one hand, the substituent base is introduced to the A series compound on the thiothiazole ring 5- site phenyl group. On the other hand, the naphthalene ring, pyridine ring, furan ring and thiophene ring are replaced by naphthalene rings, pyridine rings, furan rings and thiophene rings to obtain the B series compounds on the basis of the biological electron emission principle of the drug design, and second, according to the clinical research progress of HDAC inhibitors, the A series compounds are used. Cancer shows the therapeutic organisms 2- amino aniline formyl, N- hydroxy benzamidyl group and N- hydroxyl cinnamamide group instead of hydroxamic acid group to obtain C series compounds. Third, 1,3,4- thiazolyl heterocyclic rings can be replaced by other heterocyclic rings, and thiazole and pyrazole heterocyclic rings are changed to thiazole and pyrazole heterocyclic rings according to the principle of bioelectron emission in Cap region. D series of compounds were obtained.
In the synthesis of target compounds, A and B series compounds are made of aryl formic acid as raw materials, and 1,3,4- thiothiazole derivatives are produced by one pot reaction with three oxychloride as dehydrating agent. Then, the carboxylic acid esters containing thiothiolate or monomethyl dimethicarate are condensed to obtain thiothiol heterocyclic acid esters. Finally, the target compounds are obtained by acidification of hydroxyl oxime, and C seriation. In the synthetic synthesis, the existing thiazolyl heterocyclic carboxylates can be hydrolyzed. The carboxylic acid and Boc protect the phthalic acid two amine, and then the Boc protective group is removed to get the compound C1. The synthesis of other target compounds C2-C4 is mainly synthesized by different raw materials, which contain 1,3,4- thiothiolates, and then converted to hydroxamic acid, and the synthesis of D series compounds. Referring to the synthesis of A series and B series, the synthesis of thiazole or vishzol heterocyclic rings by reference literature and then by condensation and hydroxamic acidification are made. 143 new compounds are synthesized in this paper, including 71 new target compounds and 72 new intermediates. All new compounds are confirmed by nuclear magnetic resonance spectroscopy, carbon spectra or mass spectrometry.
The initial biological activity of all the target compounds was evaluated. Most of the A series and B series compounds have the same activity with SAHA and even higher activity of.A series. (1) the smaller the substituent to the thiazolide 5 phenyl group, the better the suppressor activity, and (2) the substituent of the benzene ring is generally introduced. The effect of the substitutions on the neighborhood was the best, (3) the inhibitory activity of the substituent on the electron substituents was significantly enhanced by the substitution of the electron acceptor for the substitution of the naphthalene rings in the.B series. The inhibitory activities of the pyridine rings, furan rings and thiophene rings were both equivalent to or higher than that of the SAHA. in the antitumor activity of the pyridine ring, furan ring and thiophene ring. In cell proliferation, the A31 effect of A series compounds is best, the antiproliferative activity of the 6 selected tumor cells is higher than that of 6m and SAHA, and B12 in B series compounds is the best. The antiproliferative activity of the activity and the.A series of 6m and SAHA and the B series compounds are all shown, and the inhibitory activity to the proliferation of the tumor cells when the Linker n=5 is long chain length n=5. Sex was not obvious; n=6 showed relatively good proliferative inhibitory activity.
The anti proliferation activity of C series compounds did not reach the corresponding hydroxamic acid derivatives. The antiproliferative activity of N- hydroxy benzamide derivatives and N- hydroxyl cinnamamide derivatives decreased significantly than that of 6m and SAHA, and the anti proliferative activity of 2- amino aniline derivatives was in the same order of magnitude as 6m and SAHA. The activity levels of 6m and SAHA were not reached.
The D series target compounds (D1, D2 and ID3) of thiazolidic and pyrazole group (D1, D2 and ID3) showed excellent antiproliferative activity to the selected 10 tumor cells, and the activity was significantly higher than that of 6m and SAHA. in addition to the activity of K562 chronic granulocytic leukemia cell lines, and the inhibition effect on 9 other solid tumor cells. It is 2-6 times higher than 6m and SAHA.
To sum up, this paper has made an in-depth structural modification on thiothiazoles HDAC inhibitors. The related structure-activity relationship studies showed that the 5- based phenyl group of 1,3,4- thiothiazole ring introduced to the neighborhood and the small substituent group was beneficial to improve the inhibition of enzyme and tumor suppressor activity, and the substitution of phenyl group as other heterocyclic or hydroxamic acid group did not detect tumor suppressor. More active compounds sometimes lead to loss of activity. In our study, we discovered that the thiazole or pyrazole heterocyclic heterocyclic compounds were replaced by thiazole or pyrazole D series target compounds, and their antitumor activity was significantly higher than that of 6m and SAHA. Further research on this series of compounds will provide new effective and low toxic antitumor drugs for the future. Direction.
【学位授予单位】:山东大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:R914
【共引文献】
相关期刊论文 前10条
1 卓志红;龚朝辉;;DNA甲基化与乳腺癌[J];癌变.畸变.突变;2008年02期
2 刘云海,曹小红,丁健桦,罗明标;5-[2-(5-甲基-1,3,4-噻二唑)偶氮]-8-羟基喹啉的合成及其与铜的显色反应研究[J];分析试验室;2005年12期
3 曹珊珊;苏永立;李瑞芳;王建刚;方伟进;岳阳阳;;Ⅰ型组蛋白去乙酰化酶在心肌肥厚中的靶点作用[J];国际心血管病杂志;2013年06期
4 齐平;靳颖华;张为革;宋宏锐;;分子靶点抗肿瘤药物研究进展[J];中国医药导刊;2014年02期
5 时鹏;年娣;屈洪党;李强;钱卫东;谢静;许力;王春;马博;;帕金森病患者血清可溶性Fas和可溶性Fas配体水平观察[J];国际神经病学神经外科学杂志;2014年03期
6 朱晓萍;;辛二酰苯胺异羟肟酸对人乳腺癌细胞T47D抗癌作用的机制[J];广东医学;2013年03期
7 梁敏;吴斌;汪亚君;;组蛋白去乙酰化酶在哮喘中的作用[J];广东医学院学报;2014年06期
8 聂建云;刘馨;金从国;陈晓群;李佳;黄云超;;HDAC1对乳腺癌细胞MDA-MB-435s增殖影响的研究[J];山东医药;2009年32期
9 Matthias Ocker;;Deacetylase inhibitors-focus on non-histone targets and effects[J];World Journal of Biological Chemistry;2010年05期
10 朱晓霞;杨磊;王昊飞;郭煜;;HDAC1蛋白在非小细胞肺癌中的表达及临床意义[J];实用医学杂志;2010年15期
相关会议论文 前3条
1 张颖杰;冯金红;王学健;徐文方;;基于组蛋白去乙酰化酶HDACs为靶标的抗癌药物发现[A];2010年中国药学大会暨第十届中国药师周论文集[C];2010年
2 陈菁菁;鲁显福;顾尔伟;;67.组蛋白去乙酰酶抑制剂应用于心血管疾病的研究进展[A];全国第四次麻醉药理学学术会议暨2013年贵州省麻醉学术年会论文汇编[C];2013年
3 张颖杰;李晓杨;李晓光;江余祺;徐文方;;N-羟基肉桂酰胺类HDAC1/3双重选择性抑制剂的首次发现[A];第十二届全国青年药学工作者最新科研成果交流会论文集[C];2014年
相关博士学位论文 前10条
1 许雪莲;儿童AML中组蛋白去乙酰化酶与阿糖胞苷活性关系的研究[D];吉林大学;2011年
2 谢桥生;乳腺癌细胞中miR-146a表达调控的表观遗传学机制[D];第四军医大学;2011年
3 孟凡良;卵巢癌表观遗传学调控及其应用相关研究[D];南方医科大学;2011年
4 申小清;噻二唑类及羧酸类配位化合物的合成、结构和性质研究[D];东北师范大学;2006年
5 任昀;孕激素受体基因甲基化与子宫内膜癌临床生物学行为的研究[D];复旦大学;2007年
6 张玉琦;DNA甲基化酶和组蛋白去乙酰化酶抑制剂治疗胰腺癌的实验研究[D];第二军医大学;2008年
7 杨新苗;组蛋白去乙酰化酶抑制剂与蛋白酶体抑制剂协同抑制乳腺癌细胞及分子机制研究[D];复旦大学;2008年
8 聂建云;组蛋白去乙酰化调控对乳腺癌细胞增殖周期影响的研究[D];昆明医学院;2010年
9 胡沙;EZH2在卵巢癌顺铂耐药中的作用及其机制研究[D];华中科技大学;2010年
10 李坚;西达本胺单药及联合紫杉醇和卡铂对特定人乳腺癌细胞株的增殖抑制以及对ERα阴性乳腺癌细胞株ER表达的影响研究[D];北京协和医学院;2012年
,本文编号:1990578
本文链接:https://www.wllwen.com/yixuelunwen/yiyaoxuelunwen/1990578.html