新型乳腺癌免疫脂质体的制备及体外性质研究
本文选题:阿霉素 + 免疫脂质体 ; 参考:《第四军医大学》2014年硕士论文
【摘要】:阿霉素(doxorubicine,DOX)是一种常用的抗肿瘤药物,属于周期非特异性药物,对RNA的抑制作用较强,抗瘤谱较广。但因其毒副作用较大,长期应用会使机体产生耐药性,导致其疗效和应用受到极大限制。脂质体作为新型的药物制剂,不仅能降低药物对机体的毒副作用,改善药代动力学分布还具有缓释控释作用,但是其缺乏肿瘤主动靶向性。免疫脂质体是近年来新兴的一个研究领域,将抗体或配体通过聚合物(如聚乙二醇衍生物)连接在脂质体上,利用抗体或配体的特异性靶向作用,与肿瘤细胞表面上的抗原或者受体结合,将药物送达病灶部位,具有靶向性强、毒副作用小、半衰期长、运载量大等优点。 大约有20-30%的乳腺癌存在人类表皮生长因子-2(human epidermal growth factorreceptor-2,HER2)过度表达。HER2基因编码一种具有酪氨酸激酶活性的蛋白,能增强激酶活性,促进细胞分裂、增生和转化。该基因在成人正常组织中表达水平较低,在乳腺癌发生的早期阶段具有高表达现象,提高了乳腺癌细胞的转移潜能。近年来,根据HER2结构构建的具有靶向作用的单克隆抗体曲妥珠单抗(trastuzumab,TMAB),曲妥珠单抗能与HER2受体结合,具有较强的亲合力和特异性,通过阻断人体表皮生长因子在HER2上的附着,产生抗肿瘤效应,为乳腺癌的治疗提供了一种新途径。曲妥珠单抗(即赫赛汀)已于1998年10月由美国FDA正式批准上市。 本文通过薄膜超声分散法制备阿霉素脂质体, DSPE-PEG-NHS与TMAB通过酰胺键连接,将阿霉素脂质体与TMAB衍生物4℃恒温震荡6h,得到阿霉素免疫脂质体。阿霉素脂质体的包封率为89.85%、载药率为8.03%、平均电荷在-26mv。确定曲妥珠单抗活性氨基数目为85个,当n(DSPE-PEG-NHS):n(TMAB)=10:1进行反应时,测得曲妥珠单抗上参与反应氨基数目为7个。制备三种不同抗体含量的阿霉素免疫脂质体,通过葡聚糖凝胶G150分离纯化,BCA法测定阿霉素免疫脂质体TMAB含量(抗体含量分别为37μg·mg-1、83μg·mg-1、108μg·mg-1),并进行体外性质研究。以AU565细胞为HER2阳性细胞,MDA-MB-231细胞为HER2阴性细胞,三种不同抗体含量的阿霉素免疫脂质体的激光共聚焦、流式细胞实验和细胞毒性实验表明:DOX-IML抗体含量83μg·mg-1时,药物入胞量为86.8%,其入胞能力和细胞毒性仅次于阿霉素。阿霉素、阿霉素脂质体、DOX IML进行体外性质实验表明:阿霉素免疫脂质体有较强的靶向性,且入胞能力和细胞毒性均比阿霉素脂质体强。本文还研究阿霉素(免疫)脂质体粒径和电位变化:包封阿霉素前后阿霉素脂质体的粒径和电位几乎无变化,键合曲妥珠单抗前后阿霉素免疫脂质体的粒径和电位变化较小。体外释药及稳定性研究得;阿霉素免疫脂质体具有一定的缓释作用,在12h内释药量累计达40%,,在72h时累积释药量几乎达到平衡,累积释药率达79%。阿霉素免疫脂质体在4℃下,稳定性较好。在25℃下,随着时间延长,粒径越来越大,颜色由红色变为暗红色,伴有大量沉淀产生。
[Abstract]:Doxorubicine (DOX) is a common antitumor drug, which is a periodic non specific drug. It has a strong inhibitory effect on RNA and a wide spectrum of antitumor. However, because of its toxic and side effects, long term application will cause resistance to the body, and the effect and application are very limited. As a new drug preparation, the liposomes can not only be reduced. The toxic side effects of drugs on the body and the improvement of the pharmacokinetic distribution also have controlled release effect, but they lack active targeting of tumor. Immunliposome is a new research field in recent years. Antibodies or ligands are connected to liposomes through polymers such as polyethylene glycol derivatives, and the specific targeting of antibodies or ligands is used. It combines with the antigen or receptor on the surface of the tumor cells to deliver the drug to the site of the lesion, which has the advantages of strong targeting, small side effects, long half-life and large carrying capacity.
About 20-30% of breast cancer, human epidermal growth factor -2 (human epidermal growth factorreceptor-2, HER2) overexpresses a protein that encodes a tyrosine kinase activity by the.HER2 gene, which can enhance the activity of the kinase and promote cell division, proliferation and transformation. The gene is expressed in normal tissues in adults with low levels and in breast cancer. The early stage of the occurrence has high expression, which improves the metastatic potential of breast cancer cells. In recent years, the monoclonal antibody to trastuzumab (TMAB), a monoclonal antibody against the target by the HER2 structure, can be combined with the HER2 receptor, with strong affinity and specificity, and by blocking the human epidermal growth factor. The attachment on HER2, which produces antitumor effects, provides a new way for the treatment of breast cancer. Trastuzumab (Herceptin) was officially approved by the US FDA in October 1998.
The liposome of doxorubicin was prepared by the thin film ultrasonic dispersion method. DSPE-PEG-NHS and TMAB were connected through the amide bond. The adriamycin liposome and the TMAB derivative oscillated at a constant temperature of 6h to obtain the adriamycin immunliposome. The encapsulation efficiency of adriamycin liposome was 89.85%, the drug loading rate was 8.03%, and the average charge was determined by -26mv. to determine the active amino group of the trastuzumab in -26mv.. The number was 85. When n (DSPE-PEG-NHS):n (TMAB) =10:1 was reacted, the number of amino groups involved in the reaction was 7. Three kinds of adriamycin immunliposomes with different antibody content were prepared and purified by dextran gel G150. The content of adriamycin free liposome TMAB was determined by BCA method (the antibody content was 37 g mg-1,8 respectively. " 3 mu g. Mg-1108 mu g. Mg-1) and study in vitro, with AU565 cells as HER2 positive cells, MDA-MB-231 cells as HER2 negative cells, and three kinds of adriamycin immunliposomes with different antibody content, laser confocal, flow cytometry and cytotoxicity test showed that when the content of DOX-IML antibody was 83 mu g. Mg-1, the drug intake was 86.8%, Its cellular and cytotoxicity were second only to adriamycin. Adriamycin, adriamycin liposome and DOX IML in vitro experiments showed that adriamycin immunliposome had stronger targeting and stronger cellular and cytotoxicity than doxorubicin liposomes. The particle size and potential of adriamycin liposomes were almost unchanged, and the size and potential of doxorubicin immune liposomes were small. The release and stability of adriamycin were studied in vitro. The release effect of adriamycin immunliposome was 40%, and the cumulative release amount was almost reached at 72h. Balance, the cumulative release rate reached 79%. adriamycin immunliposome at 4 C, and the stability was better. At 25 C, the particle size became larger and larger with time, and the color changed from red to dark red with a large amount of precipitation.
【学位授予单位】:第四军医大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:R943
【共引文献】
相关期刊论文 前10条
1 陈良红;李琼;刘晓慧;张婉萍;;纳米乳液的研究进展[J];日用化学工业;2013年05期
2 李红霞;吴莉莉;宋佳;张业旺;;聚合物胶束在药物传输系统中的应用[J];材料导报;2013年13期
3 Jun-jun Wang;Sheng-wu Huang;;Research Progress on Novel Carrier-modified Methods and Evaluation of Active Targeting Antitumor Preparation[J];Chinese Herbal Medicines;2014年01期
4 黄丽贞;陈晓红;曾书琴;;叶酸修饰的奥沙利铂纳米粒的制备及其体外特性研究[J];赣南医学院学报;2013年06期
5 钟华;许海平;张慧;;金纳米笼胶囊的制备及其在肿瘤细胞药物投放中的应用[J];分析化学;2014年04期
6 王春燕;郑辉;;紫杉醇脂质微球注射液对荷人肺癌H460裸鼠的抑瘤作用[J];癌变.畸变.突变;2014年01期
7 郭艳芳;王明召;;介绍一种树枝状大分子:DPA[J];化学教育;2014年02期
8 李睿;阮文辉;姚俊;陈宽婷;魏钦俊;鲁雅洁;曹新;;γ-聚谷氨酸胆甾醇基衍生物自组装纳米胶束的制备与表征[J];高分子材料科学与工程;2014年01期
9 张亚红;唐倩;刘耀;林凤云;王丽娟;朱照静;;自微乳化给药系统提高蒿甲醚大鼠的口服生物利用度[J];第三军医大学学报;2014年14期
10 李光华;杨忠莹;王广东;朱园勤;聂良瑞;汪春英;;RAFT聚合法合成PDMAEMA-b-PAAAB嵌段共聚物的研究[J];高分子通报;2014年07期
相关博士学位论文 前10条
1 段晓品;刺激响应性聚合物胶束在抗肿瘤转移及逆转肿瘤耐药中的应用[D];沈阳药科大学;2013年
2 王金铃;阿霉素纳米自组装体克服肿瘤的多药耐药及促进口服吸收的研究[D];沈阳药科大学;2012年
3 庄秀芬;溶瘤病毒HSV1-hGM-CSF治疗阿霉素抵抗的小鼠乳腺癌肿瘤干细胞的实验研究[D];北京协和医学院;2013年
4 朱江;超声在肿瘤诊治中应用研究—经直肠超声在直肠癌分期及脉冲式海伏热疗生物学效应研究[D];浙江大学;2013年
5 刘雅;双亲性修饰的壳聚糖纳米口服疫苗运送载体的构建与性质研究[D];中国海洋大学;2013年
6 沈鸣;多级肿瘤靶向FA-PEG-PMA-PAMAM的合成及其纳米载体系统研究[D];复旦大学;2011年
7 祖歌;迷迭香主要活性成分的绿色分离技术及其应用研究[D];东北林业大学;2012年
8 乔春燕;载BMP-2基因PLGA微球的制备及在体内外成骨作用的研究[D];吉林大学;2013年
9 陈汉;长循环靶向性载药胶束的构建及其细胞水平评价[D];北京协和医学院;2010年
10 彭琛;多功能PAMAM/金纳米复合材料的制备、表征及其在生物CT成像中的应用[D];东华大学;2013年
相关硕士学位论文 前10条
1 王风君;荷载脂质体在Hela细胞和小鼠耳蜗螺旋神经神经元中的表达差异[D];中南大学;2009年
2 张钊;聚乙二醇—聚己内酯共聚物胶束的细胞内在化作用研究[D];西南交通大学;2013年
3 孙艳芳;基于线性和星形聚甲基丙烯酸甘油酯的层层自组装及其对阿霉素的控制释放[D];天津理工大学;2013年
4 刘超宇;氧化还原敏感和肿瘤靶向聚合物胶束的研究[D];西南交通大学;2013年
5 孙森;PAMAM改善超细纤维合成革基布卫生性能的研究[D];陕西科技大学;2013年
6 杨柳;新型两性表面活性剂的分子有序组合体研究[D];东北石油大学;2013年
7 刘彦;改性PAMAM为模版模拟牙体组织中羟基磷灰石晶体的体外合成[D];广西医科大学;2013年
8 谢俊娜;聚萘及聚芴类荧光微纳米球的制备与表征[D];福建师范大学;2013年
9 吴渺;有机/无机纳米杂化齿科修复树脂的制备及性能研究[D];武汉理工大学;2013年
10 高晓宇;姜黄素聚乙二醇—聚己内酯纳米粒的研究[D];浙江中医药大学;2013年
本文编号:1995810
本文链接:https://www.wllwen.com/yixuelunwen/yiyaoxuelunwen/1995810.html