基于DNA四面体的级联式药物递送系统逆转乳腺癌细胞耐药研究
[Abstract]:Malignant tumor is a serious threat to human life and health. Up to now, chemotherapy is still the main means to treat malignant tumors. However, traditional chemotherapeutic drugs are easy to produce drug resistance and become one of the main problems of chemotherapy. In addition, chemotherapy drugs still have the disadvantages of poor tumor targeting and toxic side effects. Drug Delivery Systems (DDSs), an integrated drug delivery system (DDSs), which is targeted for high tumor targeting, reduces the toxicity of chemotherapeutic drugs (DDSs), is an imminent.DNA nanotechnology. As a new technology of nano material science, since it was asked, it has attracted much attention because of its design and predictability and the formation of unique morphologies. DNA tetrahedron (DNA) Tetrahedron), with the advantages of stable structure and performance, easy to diversify and so on, it is considered as an ideal drug carrier. Liposome (Liposome) has the characteristics of nanoscale, good biocompatibility and high biological safety. In recent years, as a transport carrier for chemotherapeutic drugs, liposomes have been widely used in the field of targeting drug delivery. The nucleus is the main target of most chemotherapeutic drugs, but the efflux of the tumor cells to chemotherapeutic drugs causes most chemotherapy drugs to be difficult to reach the nucleus. The nuclear pore diameter of the nucleus is about 9 nm, and the self assembled DNA tetrahedron particle size is about 5 nm, which can directly enter the nucleus through the nuclear pore. Based on this, this study is based on this study. Doxorubicin (DOX) is inlaid into DNA tetrahedron (Td) to form DOX@Td, and then, the efficient nuclear transport system of DOX@Td@Lipo based on DNA tetrahedron (DOX@Td@Lipo) is constructed by using immune liposomes to encapsulate DOX@Td efficiently. The characteristics of the drug delivery system constructed in this study are the use of the immune system. Phytophthora transtransport DOX@DNA tetrahedron into tumor cells efficiently. Two, using small size of DNA tetrahedron (smaller than nuclear pore) and biodegradability in the nucleus, the efficient transport of DOX into the nucleus can effectively avoid the drug delivery pathway of tumor cells and reverse the drug resistance of tumor cells. This system significantly improves the DOX pair The treatment efficiency of drug-resistant breast cancer and the toxic and side effects of DOX were reduced. Then, this study took human breast cancer cell MCF-7 and human breast cancer cell MCF-7/ADR as the cell model and MCF-7/ADR tumor bearing BLAB/C nude mice as animal models. The following three aspects were mainly studied: the system of 1.DOX@Td@Lipo cascade drug delivery system Preparation and characterization: single strand DNA (ssDNA) complex and base pair complementary pairs are self assembled into DNA tetrahedron, atomic force microscopy (Automatic Force Microscope, AFM) and gel imaging characterization. The results show that the size of tetrahedron is about 5 nm, and the distribution is uniform, and DOX is easily inserted into the properties of DNA double helix structure, and DOX@Td coupling is prepared. The stability was investigated by electrophoretic test. The results showed that DNA tetrahedron after coupling DOX still maintained its tetrahedral structure and had strong stability. Finally, DOX@Td@Lipo was prepared by reverse evaporation method and characterized by transmission electron microscope (Transmission Electron Microscope, TEM). The particle size was about 147 nm, and the particle size distribution was uniform.2.DOX. @Td@Lipo cascade drug delivery system in vitro antitumor activity and reversal of tumor cell resistance: a systematic investigation of the antitumor activity of DOX@Td@Lipo on MCF-7 and MCF-7/ADR cells showed that there was no significant difference in the inhibitory effect of DOX, DOX@Lipo and DOX@Td@Lipo on the proliferation of MCF-7 cells (the inhibition rate of 48 h was 70., respectively. 65%, 69.55%, 65.08%). However, the inhibitory effect of DOX and DOX@Lipo on the proliferation of ADR cells was significantly lower than that in the DOX@Td@Lipo group (48h inhibition rate was 21.23%, 25.73%, 79.83%). It showed that at the cell level, DOX@Td@Lipo successfully reversed the resistance of MCF-7/ADR cells to DOX and improved the ability of DOX to kill the tumor cells. The nuclear targeting ability of the constructed system was verified by fluorescence localization. The results showed that, compared with the DOX group, the Td-FAM group, the DOX@Td group and the DOX@Td@Lipo group observed the green fluorescence of FAM and the red fluorescence of DOX in the nucleus of MCF-7/ADR, while DOX and DOX@Lipo groups had no red fluorescence in the nucleus of the nucleus, indicating DOX. DOX@Lipo can not transport DOX into the nucleus of drug-resistant cells, but the DOX@Td@Lipo delivery system can transfer DOX into drug resistant cells and the release of DOX can enter the anti-tumor activity evaluation of the.3.DOX@Td@Lipo cascade drug delivery system of drug resistant cell nuclei: MCF-7/ADR bearing tumor Nude mice were used to evaluate the antitumor activity of the drug delivery system in vivo. The distribution behavior of the delivery system in nude mice was investigated by near infrared imaging technique. The results showed that DOX@Td@Lipo could be rich in tumor tissues after 1 h after intravenous injection, and the drug was enriched in tumor tissue with time. In addition, the results also showed that the encapsulation of immunliposome enhanced the circulation time of the drug in nude mice. The pharmacodynamic results showed that after 2 weeks of treatment, the inhibitory rate of the DOX@Td@Lipo group was 66.7%, the inhibition rate in the group DOX@Lipo was 41.67%, and the group Td@Lipo was not treated. The tumor has a significant therapeutic effect. The antitumor activity of the body is further confirmed by pathology. By comparing the normal tissues and organs, DOX@Td@Lipo significantly reduces the toxic and side effects of DOX.
【学位授予单位】:郑州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R943;R96
【相似文献】
相关期刊论文 前10条
1 赵艳丽,刘国琴;一种快速提取小麦DNA的方法[J];郑州工程学院学报;2002年03期
2 赵广超 ,朱俊杰 ,陈洪渊 ,王雪梅 ,陆祖宏;Spectroscopic and Spectroelectrochemical Studies of Interaction of Nile Blue with DNA[J];Chinese Journal of Chemistry;2002年01期
3 张鹏 ,孟继本 ,龙江 ,松浦辉男 ,王永梅;Synthesis of Benzo [α]phenoxazin-5-one Derivatives and Their Interactions with DNA[J];Chinese Journal of Chemistry;2002年05期
4 陈绘丽 ,杨频;A Novel Cobalt(III) Mixed-polypyridyl Complex: Synthesis, Characterization and DNA Binding[J];Chinese Journal of Chemistry;2002年12期
5 周莉,李树蕾,陈辉,黄可欣,聂毓秀;DNA Damage Effect of Mixed Rare Earth Changle Crossing Placenta Barrier on Rat Embryo[J];Journal of Rare Earths;2003年02期
6 陈婧,康敬万;Interaction between Eu(bpy)_3~(3+) Complex and DNA by Fluorophotometry[J];Journal of Rare Earths;2003年S1期
7 张强;企业DNA:核心竞争力[J];中国石化;2004年06期
8 ;Interaction between DNA with Complex of Eu~(3+)-Rutin by UV-Visible Spectroscopy and Electrochemistry[J];Journal of Rare Earths;2005年04期
9 周春琼,邓先和,杨频;Interaction of Complex of Europium and Hbbimp with DNA[J];Journal of Rare Earths;2005年05期
10 ;Synthesis of a New Cobalt (II) Complex and its Interaction with DNA[J];Chinese Chemical Letters;2005年04期
相关会议论文 前10条
1 Michael J.Siefkes;Cory O.Brant;Ronald B.Walter;;A novel real-time XL-PCR for DNA damage detection[A];渔业科技创新与发展方式转变——2011年中国水产学会学术年会论文摘要集[C];2011年
2 ;Hormonal Regulation and Tumorigenic Role of DNA Methyltransferase[A];2011中国妇产科学术会议暨浙江省计划生育与生殖医学学术年会暨生殖健康讲习班论文汇编[C];2011年
3 Dongmei Zhao;Fan Jin;Yuli Qian;Hefeng Huang;;Expression patterns of Dnmtl and Dnmt3b in preimplantational mouse embryos and effects of in-vitro cultures on their expression[A];中华医学会第十次全国妇产科学术会议妇科内分泌会场(妇科内分泌学组、绝经学组、计划生育学组)论文汇编[C];2012年
4 姜东成;蒋稼欢;杨力;蔡绍皙;K.-L.Paul Sung;;在聚吡咯微点致动下的DNA杂交行为[A];2008年全国生物流变学与生物力学学术会议论文摘要集[C];2008年
5 白明慧;翁小成;周翔;;联邻苯二酚类小分子作为DNA交联剂的研究[A];第六届全国化学生物学学术会议论文摘要集[C];2009年
6 张晔;杜智;杨斌;高英堂;;检测外周血中游离DNA的应用前景(综述)[A];天津市生物医学工程学会第29届学术年会暨首届生物医学工程前沿科学研讨会论文集[C];2009年
7 周红;郑江;王良喜;丁国富;鲁永玲;潘文东;罗平;肖光夏;;CpG DNA诱导全身炎症反应综合征的作用及其机制研究[A];全国烧伤创面处理、感染专题研讨会论文汇编[C];2004年
8 ;EFFECTS OF Ku70-DEFICIENT ON ARSENITE-INDUCED DNA DOUBLE STRAND BREAKS, CHROMOSOMAL ALTERATIONS AND CELL CYCLE ARREST[A];海峡两岸第三届毒理学研讨会论文摘要[C];2005年
9 李经建;冀中华;蔡生民;;小沟结合方式中的DNA媒介电荷转移[A];第十三次全国电化学会议论文摘要集(下集)[C];2005年
10 ;The interaction between Levofloxacine Hydrochloride and DNA mediated by Cu~(2+)[A];湖北省化学化工学会2006年年会暨循环经济专家论坛论文集[C];2006年
相关重要报纸文章 前10条
1 本报记者 袁满;平安:把“领先”作为DNA[N];经济观察报;2006年
2 舒放;编织一个DNA纳米桶[N];医药经济报;2006年
3 闫洁;英两无罪公民起诉要求销毁DNA记录[N];新华每日电讯;2008年
4 何德功;日本制成诊断鱼病的“DNA书”[N];农民日报;2004年
5 本报记者 张巍巍;DNA样本也能作假[N];科技日报;2009年
6 周斌伟 邹巍;苏州警方应用DNA技术一年侦破案件1887起[N];人民公安报;2011年
7 本报记者 杨天笑;揭秘“神探”DNA[N];苏州日报;2011年
8 第四军医大学基础医学部生物化学与分子生物学教研室教授 李福洋;破除法老DNA的咒语[N];东方早报;2011年
9 常丽君;DNA电路可检测导致疾病的基因损伤[N];科技日报;2012年
10 常丽君;效率和质量:“DNA制造业”两大障碍被攻克[N];科技日报;2012年
相关博士学位论文 前10条
1 唐阳;基于质谱技术的基因组DNA甲基化及其氧化衍生物分析[D];武汉大学;2014年
2 池晴佳;DNA动力学与弹性性质研究[D];重庆大学;2015年
3 胡璐璐;哺乳动物DNA去甲基化过程关键酶TET2的三维结构与P暬蒲芯縖D];复旦大学;2014年
4 马寅洲;基于滚环扩增的DNA自组装技术的研究[D];南京大学;2014年
5 黄学锋;精子DNA碎片的临床意义:临床和实验研究[D];复旦大学;2013年
6 隋江东;APE1促进DNA-PKcs介导hnRNPA1磷酸化及其在有丝分裂期端粒保护中的作用[D];第三军医大学;2015年
7 刘松柏;结构特异性核酸酶FEN1在DNA复制及细胞周期过程中的功能性研究[D];浙江大学;2015年
8 王璐;哺乳动物中亲本DNA甲基化的重编程与继承[D];中国科学院北京基因组研究所;2015年
9 齐文靖;染色质改构蛋白BRG1在DNA双链断裂修复中的作用及机制研究[D];东北师范大学;2015年
10 龙湍;水稻T-DNA插入突变群体侧翼序列的分离分析和OsaTRZ2的克隆与功能鉴定[D];华中农业大学;2014年
相关硕士学位论文 前10条
1 赵荦;基于DNA四面体的级联式药物递送系统逆转乳腺癌细胞耐药研究[D];郑州大学;2017年
2 董洪奎;面向可视化纳米操作的DNA运动学建模及误差实时校正方法[D];沈阳理工大学;2014年
3 闻金燕;水溶性羧基和吡啶基咔咯大环与DNA和人血清蛋白的相互作用[D];华南理工大学;2015年
4 江怿雨;水溶性羧酸卟啉及其配合物与DNA和人血清蛋白的相互作用[D];华南理工大学;2015年
5 高志森;比较外周游离循环肿瘤DNA与癌胚抗原监测非小细胞肺癌根治术前后肿瘤负荷变化的初步研究[D];福建医科大学;2015年
6 丁浩;血浆循环DNA完整性及多基因甲基化对肺癌诊断价值的研究[D];河北大学;2015年
7 王鹏;基于碳点@氧化石墨烯复合材料DNA生物传感器的构建及用于PML/RARα基因检测[D];福建医科大学;2015年
8 李海青;转碱篷和盐角草总DNA的耐盐紫花苜蓿的选育[D];内蒙古大学;2015年
9 李婷婷;小鼠DNA模式识别重要受体的分子结构特征及其功能研究[D];中国农业科学院;2015年
10 刘瑞斯;抗癌药物奥沙利铂与DNA相互作用的原子力显微镜观察研究[D];东北林业大学;2015年
,本文编号:2165757
本文链接:https://www.wllwen.com/yixuelunwen/yiyaoxuelunwen/2165757.html