通过临床数据差异分析优化电子化逻辑检查表
[Abstract]:In clinical trials, many different data modules are usually collected, such as adverse events, disease history, demography, and so on. When the input data in the data module are contrary to the data standard, the corresponding data differences are generated. Most of the data differences are generated by electronic logic check, which helps to find and place the data in time. But the electronic logic check table still has some shortcomings, such as repeated logic check, error logic check and so on. Aim to analyze the data module with high data difference rate in the case report table, and discuss the optimization logic check program. In order to reduce the unnecessary electricity on the premise of ensuring the consistency, integrity and accuracy of the data. Methods 1. to improve the efficiency of data administrators. Method 1. collected from a large multinational enterprise database to complete 113 clinical trial data from 2011 to 2013. Investigate the basic situation of each clinical trial: test number, clinical period, completion year, treatment field, total number of patients, data points general .2. compared the number of different clinical periods, different years and different fields of treatment, the difference rate of each clinical trial data module,.3. analysis of the logic check program and data difference on the module with high difference rate of data, through the following three aspects: system optimization, program simplification, and the balance of electronic inspection and manual inspection. The method of improving the electronic logic Checklist (.4.), the optimization method proposed by each data module to extract the moderate number of project number and the representative clinical trial of the data module difference rate is reviewed, and the number of the reduced logic checks and the unnecessary data difference after the application of the above optimization are analyzed. Results: 1. the results are as follows: the data modules with high difference rate are mainly concentrated in the bad event data module, the combined drug data module, the laboratory data module, the drug recording data module, and the adverse event data module. The range of the difference rate is 4%-15%. The range of the difference rate of the combined drug data module is 7.5%-27.6%. The difference rate range of the drug recording data module is 1.3%-18.3%. The difference rate range of the laboratory data module is the electronic logic check program set on the four data modules by 0.6%-23.7%.2.. It is suggested to use the following three aspects. To improve: (1) the correlation problem set on the case report table, the narrative text and the missing data, the system optimization, the control in the data entry stage, the reduction of the possible errors when the data entry is reduced, thus reducing the logical check needed in the data cleaning. The program is simplified to remove logical repetition or close inspection. 3. The logical check set in the database is not the more the better. In the actual project, the balance between the electronic inspection and the manual inspection should be considered. For the laboratory data module, it is suggested to change the original electronic check into the Lab Review Tool.3. for the bad event module, It is found that the clinical trial A can reduce 22.45% of the logic check program through the above optimization: for the combined medication module, it is found that the clinical trial B can reduce the logic check program by the above optimization method: for the drug recording module, it is found that the clinical trial C can reduce the logical inspection process by 21.1% through the above optimization method. In the laboratory record module, it is found that the clinical trial D can reduce 16.7% of the logic check program through the above methods. Conclusion: 1. the modules with high clinical data difference rate are mainly concentrated in the adverse event module, the combined drug module, the medicine recording module and the laboratory data module, so that the future clinical trial data management plan is formulated. More emphasis is placed on the electronic logic checklist after.2. optimization, which reduces the unnecessary electronic logic check program, and reduces the work burden of data managers on the basis of ensuring data consistency, accuracy and integrity, and provides valuable experimental basis for standardization of electronic inspection in future clinical data management. Reference resources.
【学位授予单位】:复旦大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP311.13;R95
【相似文献】
相关会议论文 前4条
1 徐宗昌;黄书峰;孙寒冰;;面向故障诊断的IETM故障数据模块研究[A];Proceedings of 14th Chinese Conference on System Simulation Technology & Application(CCSSTA’2012)[C];2012年
2 彭菲菲;孙忠林;魏永山;;网络数据资源动态聚合中Web数据模块技术的研究与应用[A];IT服务促进企业信息化——第十一届中国Java技术及应用交流大会文集[C];2008年
3 高秀丽;孙忠林;魏永山;;基于Web的网络数据资源动态关联方法研究与应用[A];IT服务促进企业信息化——第十一届中国Java技术及应用交流大会文集[C];2008年
4 徐宗昌;张光明;李博;;基于IETM的装备交互式训练研究[A];Proceedings of 14th Chinese Conference on System Simulation Technology & Application(CCSSTA’2012)[C];2012年
相关重要报纸文章 前4条
1 刘义玲;捷讯推出新款无线数据模块[N];通信产业报;2001年
2 林琪;组件技术在Delphi中的实现[N];中国计算机报;2001年
3 周艳会邋作者单位系总后后勤科学研究所;利用Delphi读写Excel信息[N];计算机世界;2007年
4 彭;捷讯SpringPort连接无线有线[N];中国计算机报;2001年
相关硕士学位论文 前10条
1 袁柳柳;通过临床数据差异分析优化电子化逻辑检查表[D];复旦大学;2014年
2 阮先军;油港设备智能交互式电子技术手册研究[D];武汉理工大学;2013年
3 于春慧;交互式电子技术手册系统的研究与设计[D];南京邮电大学;2013年
4 李宗亮;基于S1000D标准的IETM系统技术研究[D];广东工业大学;2006年
5 吴星佐;基于日志挖掘的IETM数据模块推荐模型研究[D];哈尔滨工程大学;2013年
6 韩美善;多模数据卡PC侧软件数据模块的研究与实现[D];西安电子科技大学;2012年
7 向芬芬;IETM技术在便携式工卡系统中的应用研究[D];南京航空航天大学;2012年
8 杨天贺;基于S1000D规范的IETM的研究与应用[D];南京航空航天大学;2011年
9 于强强;电能质量在线监测系统的设计与数据模块的实现[D];山东大学;2008年
10 任兴旺;CALS体系下基于多色集合的IETM研究[D];广东工业大学;2007年
,本文编号:2167969
本文链接:https://www.wllwen.com/yixuelunwen/yiyaoxuelunwen/2167969.html