西罗莫司对大鼠肾脏缺血再灌注损伤早期的保护及对肾小管上皮细胞修复的影响
[Abstract]:Ischemia-reperfusion injury is an unavoidable stage in solid organ transplantation. In renal transplantation, the presence of ischemia-reperfusion injury can significantly increase the incidence of acute rejection after kidney transplantation. Similarly, the repair of renal tubular epithelial cells takes a relatively long time, resulting in delayed graft function after kidney transplantation. Renal tubular cell culture models, animal experiments and clinical studies suggest that renal tubular epithelial cell death induced by renal ischemia-reperfusion injury has two forms of necrosis and apoptosis. In the late stage, the dedifferentiated renal tubular epithelial cells proliferate, migrate and redifferentiate under the action of various repair mechanisms, and the proliferation of renal tubular epithelial cells starts gradually. As the coexistence of solid organ transplantation and ischemia-reperfusion injury, we should adopt active and effective methods to inhibit the apoptosis of renal tubular epithelial cells to the greatest extent, alleviate the adverse effects of renal ischemia-reperfusion injury, protect renal function and reduce it. The delayed recovery of graft function and the incidence of acute rejection after oligokidney transplantation can ultimately prolong the survival time of transplanted kidney and recipients, which has far-reaching clinical significance.
Sirolimus (SRL) is a mammalian target of rapamycin (mTOR) inhibitor. Animal experiments and many years of clinical application have shown that the CNI-based immunosuppressive regimen or the CNI-based immunosuppressive regimen after switching from SRL-based to sirolimus-based immunosuppressive regimens are CNI-based immunosuppressive. Compared with CNI-based immunosuppressive regimen, sirolimus significantly reduced the creeping increase of serum creatinine and improved renal function after renal transplantation. The renal function was significantly better than that of the CNI group. For patients with chronic creeping creatinine elevation and CNI nephrotoxicity after renal transplantation, timely SRL conversion therapy can significantly improve renal transplant function and prolong the survival time of renal transplant recipients.
At present, the role of SRL in ischemia-reperfusion injury is still controversial. It has been found that SRL can significantly alleviate renal ischemia-reperfusion injury and improve renal function in rats through the following mechanisms: (1) activating T cell apoptosis through indirect pathway, preventing the antigen presentation of dendritic cells (DC) and further inhibiting its maturation; (2) On Thursday, Gui et al. treated hypoxic-reoxygenated vascular endothelial cells with SRL, inhibited the adhesion of vascular endothelial cells to neutrophils by inhibiting the signal transduction pathways of ROS, JNK and NF-kappa B. Yang B et al. found that SRL interfered with renal ischemia-reperfusion injury, mainly activating. 24KDCaspase-3 can reduce the occurrence of apoptosis and the expression of Fas in distal convoluted tubules. It can protect the ischemic kidney from reperfusion injury by alleviating the immune injury induced by Fas signal pathway. Bohmova R et al. Observation of renal ischemia-reperfusion injury in transgenic hypertensive rats showed that small doses of SRL can alleviate the production of renin. In vitro, SRL inhibits the proliferation of proximal convoluted tubular cells and promotes apoptosis by inhibiting 70 kDaS6 protein kinase in renal tubular cells. In vivo, SRL inhibits tubular cell regeneration and enhances tubular fineness. Lui SL reported that SRL decreased the expression of proliferating cell nuclear antigen (PCNA) on day 1 and day 3, but on day 7 there was no difference between the control group, suggesting that SRL could aggravate renal damage mainly by inhibiting renal tubular cells. The regeneration of renal tubular cells delayed the recovery of renal function, but did not always inhibit the regeneration of renal tubular cells.
In ischemia-reperfusion injury, the effects of different doses of SRL on the proliferation and repair of renal tubular epithelial cells after ischemia-reperfusion injury and apoptosis of renal tubular epithelial cells in rats at different stages are not clear. Protective effect, however, may inhibit the proliferation, migration, redifferentiation and skeleton remodeling of renal tubular epithelial cells in the later stage as the repair procedure of renal tubular epithelial cells is initiated step by step, which may affect the recovery of renal function in a dose-dependent and reversible manner. Rat renal ischemia-reperfusion injury model was established based on the valley concentration as the early treatment concentration after renal transplantation. The expression of apoptotic gene Fas, Bcl-2 and PCNA, the expression of tubular epithelial cell repair factor HGF and BMP-7 mRNA, and the expression of NGAL, IL-18, Fas, Bcl-2 and PCNA were detected. The combined effects of perfusion injury and repair of renal tubular epithelial cells.
Part one: protective effects of sirolimus on renal ischemia-reperfusion injury in early stage
abstract
Objective: To investigate the effects of sirolimus (SRL) on renal ischemia-reperfusion injury in rats at different stages.
Method:
1. Ninety male SD rats were randomly divided into five groups: sham, I/RI/R+SRL 1mg/(kg.d), I/R+SRL 3mg/(kg.d), I/R+SRL 5mg/(kg.d).
2. a rat model of ischemia-reperfusion injury was established.
3. The corresponding dosage of SRLlmg.3mg.5mg and 10ml normal saline were given to each group 3 days before operation and daily after operation.
4.sham and I/R were given normal saline to each observation day.
5. after 1,3,7 days, 6 rats in each group were sacrificed to get whole blood and kidney tissue, and serum creatinine was detected, p2-MG.
Neutrophil gelatinase associated lipid carrier protein (NGAL) and IL-18 were measured by 6. ELISA.
7.HE staining was used to evaluate histopathological changes.
8. immunohistochemical SABC method was used to detect the expression of Fas and Bcl-2 protein in renal tissue.
9. Western-blot technology was used to detect the expression intensity of Fas and Bcl-2 protein.
10. Deoxyribonucleotide terminal transferase mediated nick end labeling (TUNEL) was used to detect the apoptosis rate of renal cells.
Result:
1. The levels of serum Cr, p2-MG, IL-18, Fas and Bcl-2, pathological score, positive expression rate of Fas and Bcl-2 protein and apoptosis index were all increased at 1 and 3 days after operation. Except for Bcl-2, I/R+SRL5 mg/(kg.d) I/R+SRL3 mg/(kg.d) I/R+SRL1 mg/(kg.d) I/R (P 0.05).
2.Bc1-2 level:][/R+SRL5mg/ (kg.d) I/R+SRL3mg/ (kg.d) I/R+SRL1mg/ (kg.d) I/Rsham (P0.05).
3. Fas, Bcl-2 level 7 days after operation: I/R+SRL5mg/ (kg.d) was different from sham and I/R+SRLlmg/ (kg.d) (P0.05).
4. The level of NGAL was higher than that of sham (P 0.05) one day after operation. The apoptosis index I/R+SRL5 mg/(kg.d) was different from the other four groups (P 0.05).
Conclusion:
1. a rat model of renal ischemia-reperfusion injury was successfully established.
2. Sirolimus can protect renal function by inhibiting apoptosis of renal tubular epithelial cells in the early stage of ischemia-reperfusion injury.
3. sirolimus dose dependently protects renal function at the early stage of ischemia-reperfusion injury.
The second part is the effect of sirolimus on the repair of rat renal tubular epithelial cells.
abstract
Objective: To investigate the effect of sirolimus (SRL) on the repair of renal tubular epithelial cells in different periods.
Method:
1. Ninety male SD (Sprague-Dawley) rats were randomly divided into five groups: sham, I/R, I/R + SRLlmg / (kg.d), I/R + SRL3mg / (kg.d), I/R + SRL5mg / (kg.d).
2. a rat model of ischemia-reperfusion injury was established.
3. Each group was given the corresponding dose of SRLlmg, 3mg, 5mg and 10ml normal saline 3 days before operation and every day after operation.
4.sham and I/R were given normal saline to each observation day.
5. after 1,3,7 days, 6 rats in each group were sacrificed to get whole blood and kidney tissues, and serum creatinine was detected.
The level of p2-MG and hepatocyte growth factor (HGF) was determined by 6. ELISA.
7.HE staining was used to evaluate histopathological changes.
8. immunohistochemical SABC method was used to detect the expression of proliferating cell nuclear antigen (PCNA) protein in renal tissue.
9. RT-PCR technology was used to detect the expression of mRNA, bone morphogenetic protein -7 (BMP-7) mRNA in repair factor HGF.
Result:
1. The levels of serum Cr, beta 2-MG and pathological score were all increased at 1 and 3 days after operation: sham I/R + SRL 5 mg / (kg.d) I/R + SRL 3 mg / (kg.d) I/R + SRL 1 mg / (kg.d) I/R (P 0.05);
2. Blood HGF value, HGF mRNA, BMP-7 mRNA level and PCNA level at 1,3,7 days after operation: shamI/R+SRL5mg/(kg.d) I/R+SRL3mg/(kg.d) I/R+SRLlmg/(kg.d) I/R (P 0.05);
No proliferating cells were found in all stages after 3.Sham.
Conclusion:
1. a rat model of ischemia-reperfusion injury was successfully established.
2. The antiproliferative effect of sirolimus on renal tubular epithelial cells in ischemia-reperfusion injury hinders the process of renal tubular epithelial cell migration and skeletal reconstruction.
3. sirolimus has a dose-dependent anti proliferative effect in ischemia-reperfusion injury.
【学位授予单位】:郑州大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:R965
【相似文献】
相关期刊论文 前10条
1 衣秀娜,殷积慧;氯胺酮与缺血再灌注损伤[J];实用医技杂志;2004年13期
2 小达瓦;;大蒜素在缺血再灌注损伤中的作用研究[J];西藏大学学报(汉文版);2007年03期
3 王玉梅;商亚珍;;线粒体与脑缺血再灌注损伤的关系[J];承德医学院学报;2009年04期
4 吴丽娥;陈金;和姬苓;孙刚;闫春华;耿红;郭霞;乌兰;贾璐;;抗肿瘤坏死因子α单克隆抗体对大鼠脑缺血再灌注损伤的作用[J];中华老年心脑血管病杂志;2009年02期
5 丁明;宗波;王学平;;芬太尼及甲泼尼龙琥珀酸钠对家兔骨骼肌缺血再灌注损伤的保护机制[J];山东大学学报(医学版);2012年09期
6 曹霞,谷欣权,陈燕平,马兴元,杨世杰;西洋参茎叶三醇组皂苷对离体缺血再灌注损伤心肌的影响[J];中国老年学杂志;2003年11期
7 祝远瑞,渠翠华,李支援;脑缺血再灌注损伤的炎症机制[J];菏泽医学专科学校学报;2003年01期
8 蒋红玉,张思为;芪棱汤抗大鼠脑缺血再灌注损伤的形态学研究[J];中国医药学报;2004年03期
9 陈世新,李建雄,侯健;电针对脑缺血再灌注损伤的治疗作用[J];咸宁学院学报(医学版);2005年03期
10 张俐;洪振强;鲁力;陈伯仪;;丹参改善骨骼肌缺血再灌注损伤的超微结构观察[J];中国骨伤;2007年02期
相关会议论文 前10条
1 黄唯佳;陈寿权;李惠萍;程俊彦;赵初环;李章平;王明山;王万铁;王卫;;家兔脑缺血再灌注损伤时血栓素B_2/6-酮-前列腺素F_(1α)的变化及醒脑静的保护作用[A];2005急诊医学学术研讨会暨《中华急诊医学杂志》第四届组稿会论文汇编[C];2005年
2 高立建;谢荣爱;田建会;;四氢生物喋呤在新西兰兔缺血再灌注损伤中的保护作用[A];中国心脏大会(CHC)2011暨北京国际心血管病论坛论文集[C];2011年
3 刘金林;;炎症与脑缺血再灌注损伤及中药干预研究进展[A];安徽省药理学会2012年学术年会论文汇编[C];2012年
4 冯友权;孟尽海;白洁;;氧自由基在缺血再灌注损伤中的机制研究进展[A];2009年西部麻醉学术论坛论文汇编[C];2009年
5 曾靖;李良东;黄志华;黎晓;肖海;;3′-大豆苷元磺酸钠对脑缺血再灌注损伤的保护与细胞因子的关系[A];中国病理生理学会第九届全国代表大会及学术会议论文摘要[C];2010年
6 黄绍烈;左汉恒;邱宇安;;缺血再灌注损伤的研究与展望[A];江西省第三次中西医结合心血管学术交流会论文集[C];2006年
7 董疑;杨立平;陈良万;;心肌肽对幼兔未成熟心肌缺血再灌注损伤[A];中华医学会第七次全国胸心血管外科学术会议暨2007中华医学会胸心血管外科青年医师论坛论文集心血管外科分册[C];2007年
8 涂泽松;陈志维;;丹参单体成分在缺血再灌注损伤中的保护机制研究进展[A];中华中医药学会骨伤分会第四届第二次会议论文汇编[C];2007年
9 蒋红梅;董强;;复方丹参注射液抗睾丸缺血再灌注损伤的实验研究[A];全国中医药科研与教学改革研讨会论文集[C];2004年
10 朱海英;;内质网应激在大鼠脑缺血再灌注损伤中的作用研究[A];山东省2013年神经内科学学术会议暨中国神经免疫大会2013论文汇编[C];2013年
相关重要报纸文章 前7条
1 衣晓峰 岳金凤 记者 李丽云;我科学家揭示脑缺血再灌注损伤奥秘[N];科技日报;2007年
2 衣晓峰 靳万庆;静脉麻醉药保护脑缺血再灌注损伤机制被揭示[N];中国中医药报;2007年
3 ;抗呆I号可恢复脑缺血再灌注损伤细胞功能[N];中国中医药报;2004年
4 张中桥;黄芪对脑缺血再灌注损伤有神经保护作用[N];中国医药报;2006年
5 张中桥;黄芪对脑缺血再灌注损伤有神经保护作用[N];中国中医药报;2006年
6 张茨;扭转的睾丸切还是保——医生有新说[N];健康报;2005年
7 燕海霞 王忆勤 李福凤;川芎嗪在肾脏病中应用前景看好[N];中国医药报;2005年
相关博士学位论文 前10条
1 尚宪荣;益气活血化瘀法治疗下肢缺血再灌注损伤的临床研究[D];北京中医药大学;2014年
2 林生;右美托咪定对大鼠脑缺血再灌注损伤的保护作用及机制[D];山东大学;2013年
3 陈娜;脑缺血再灌注损伤神经保护策略研究[D];中国人民解放军军事医学科学院;2012年
4 杨金凤;奥曲肽对兔肝缺血再灌注损伤的影响及机理研究[D];中南大学;2007年
5 王乾伟;不同血流动力学状态对肝脏热缺血再灌注损伤的影响及干预研究[D];复旦大学;2012年
6 杨帆;固有免疫分子NLRP3在脑缺血再灌注损伤中的作用及机制[D];山东大学;2014年
7 顾锦华;泊洛沙姆188对脑缺血再灌注损伤的保护作用及其机制研究[D];苏州大学;2013年
8 李林;TRPV4受体在脑缺血再灌注损伤中的作用及其分子机制研究[D];南京医科大学;2014年
9 李晓凯;重组人促红细胞生成素模拟缺血预适应改善大鼠肠系膜缺血再灌注损伤[D];第二军医大学;2009年
10 王建明;TLR4信号转导通路活化在胃缺血再灌注损伤中的作用研究[D];昆明医学院;2010年
相关硕士学位论文 前10条
1 乔菲菲;高密度脂蛋白对缺血再灌注损伤肺组织影响[D];山西医科大学;2009年
2 刘斐;血必净注射液对大鼠下肢缺血再灌注损伤的作用[D];山西医科大学;2012年
3 费鲜晓;降粘抗栓片Ⅲ号对大鼠脑缺血再灌注损伤的保护机制研究[D];第四军医大学;2009年
4 何平平;脑缺血再灌注损伤对羟基红花黄色素A透过血脑屏障的研究[D];山东大学;2009年
5 罗从娟;阿魏酸钠对大鼠肾脏缺血再灌注损伤的保护作用[D];吉林大学;2007年
6 潘建华;右美托咪定对小鼠肝脏缺血再灌注损伤的保护效应[D];苏州大学;2013年
7 马同强;蛇床子素后处理对兔心肌缺血再灌注损伤的保护作用及其机制[D];山西医科大学;2008年
8 马根顺;胃饲红景天水煎剂拮抗大鼠肝脏原位热缺血再灌注损伤的实验研究[D];昆明医学院;2009年
9 余涛;映山红总黄酮对脑缺血再灌注损伤的保护作用[D];安徽医科大学;2009年
10 张天生;不同时程电针诱导大鼠“脑缺血再灌注损伤”保护的比较研究[D];成都中医药大学;2006年
,本文编号:2208298
本文链接:https://www.wllwen.com/yixuelunwen/yiyaoxuelunwen/2208298.html