基于代谢组学与微生物组学的苦荞蛋白降脂机理的研究
[Abstract]:With the change of people's dietary structure and the aggravation of population aging, hyperlipidemia has become an important factor to induce cardiovascular and cerebrovascular diseases. The study shows that hyperlipidemia is closely related to people's diet, and it is one of the effective ways to interfere with hyperlipidemia by adjusting people's food structure. Tartary buckwheat (Tartary buckwheat), as a unique food resource in China, has been proved to have many functions such as lowering blood lipid, but the study on its mechanism is not perfect. A model of hyperlipidemic mice with streptozotocin (STZ) was established by injecting high-fat dietary streptozotocin (STZ) into mice. The blood lipid and blood glucose metabolism (total triglyceride (TG), total cholesterol (TC),) of mice treated with Tartary buckwheat protein diet was studied. Effects of high density lipoprotein (HDL-C), low density lipoprotein (LDL-C), fasting glucose (GLU) and insulin (INS), The mechanism of Tartary buckwheat protein (Tartary buckwheat protein) was studied at molecular level by combining plasma metabolomics analysis technique with intestinal microbiome technique (Illumina second generation sequencing technique). (1) the results showed that: after 6 weeks of experiment, the mechanism of Tartary buckwheat protein was analyzed. The liver index of the hyperlipidemic model group was significantly higher than that of the control group (68.5%), while the liver index of Tartary buckwheat protein group was 13.2g lower than that of the hyperlipidemic model group, and the fatty liver phenomenon was alleviated. The contents of TC and LDL-C in the high-fat model group were significantly higher than those in the control group (86.1% and 80.5%, respectively). The TC and LDL-C contents in the Tartary buckwheat protein group were significantly lower than those in the high-fat model group. It was 48.1% and 47.7% (P0.05), which improved lipid metabolism. Hyperlipidemia model mice showed impaired glucose tolerance, while Tartary buckwheat protein significantly improved glucose metabolism. At the same time, plasma inflammatory factors (lipopolysaccharide (LPS), interleukin-6 (IL-6), tumor necrosis factor a (TNF-0a) were significantly lower than those in the hyperlipidemia model group (P0.05). The results indicated that Tartary buckwheat protein could inhibit the inflammatory reaction induced by high fat diet. (2) the plasma metabolic profile of mice was obtained by UPLC-IT-TOF technique and was analyzed by HMDB,KEGG,MetPA database. It was found that the metabolic disorder induced by high fat diet in mice was mainly related to the metabolism of linoleic acid, glycerol phospholipid, sphingolipid, tryptophan, arachidonic acid and glucose. Phosphatidylcholine, linoleic acid, phosphatidic acid, lysophosphatidylcholine, glycerol, phosphatidylethanolamine, glucuronide, sphingomyelin, galactose ceramide, cerebral glucoside, glucosamine, There are 12 potential biomarkers of prostaglandin G2. (3) microflora of mouse fecal samples was studied by high-throughput sequencing (Illumina second-generation sequencing technique): Alpha diversity analysis (OTU number, Shannon index, simpson index, Chaol index, OTU number, Shannon index, simpson index, Chaol index, OTU number, Shannon index, simpson index, Chaol index). The results of ACE index showed that the species richness of the control group was significantly higher than that of the high-fat group and the Tartary buckwheat protein group, but the microbial diversity of the Tartary buckwheat protein group was significantly higher than that of the high-fat group. The results showed that Tartary buckwheat protein could significantly increase the diversity of bacteria in high-fat mice, and was closer to the control group. The results of Beta diversity analysis (PCoA analysis, LEfSe analysis) showed that there was a significant difference between the fecal samples of the three groups. The difference between the intervention group and the control group of Tartary buckwheat protein was smaller than that between the high-fat model group and the control group, which indicated that Tartary buckwheat protein could inhibit the intestinal flora disorder caused by high-fat diet. To sum up, Tartary buckwheat protein can regulate the imbalance of intestinal flora induced by high-fat diet in mice, which may be one of the important ways to interfere with hyperlipidemic blood glucose metabolism disorder.
【学位授予单位】:上海应用技术大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R151
【相似文献】
相关期刊论文 前10条
1 王转花,,张政,林汝法,周明德;苦荞叶片超氧化物歧化酶的纯化及性质研究[J];生物化学杂志;1994年05期
2 曹树明;陈建雯;刘静;胡建林;吴兴德;;云南昭通苦荞、甜荞中氨基酸和微量元素的测定[J];中国民族民间医药;2010年13期
3 勾秋芬;;苦荞中手性肌醇提取条件的研究[J];北方药学;2014年05期
4 张政,王转花,林汝法,金晓弟;苦荞种子胰蛋白酶抑制剂的分离纯化及部分性质研究[J];中国生物化学与分子生物学报;1999年02期
5 杨从彪;;故乡的苦荞[J];开卷有益(求医问药);2007年10期
6 张万明;苦荞菜的开发利用前景[J];四川农业科技;2004年04期
7 王廷璞;赵强;袁建军;;响应面法优化苦荞壳中总黄酮的提取工艺[J];食品安全质量检测学报;2014年06期
8 侯晓军,畅文军,陈立钊,张政,刘知学,王转花;一种苦荞主要过敏原基因cDNA的克隆及序列分析[J];中国生物化学与分子生物学报;2003年04期
9 罗光宏;祖廷勋;杨生辉;王丹霞;蒲小龙;;复方苦荞螺旋藻片的降糖作用及安全性[J];食品与发酵工业;2013年11期
10 李双江;朱冬寅;秦东;李成磊;陈惠;吴琦;;苦荞类黄酮3′-羟化酶基因的克隆及其冷胁迫下的组织表达[J];中草药;2014年09期
相关会议论文 前9条
1 许明;韩亮;李艳琴;;苦荞黄酮类化合物的稳定性研究[A];第三届泛环渤海(七省二市)生物化学与分子生物学会——2012年学术交流会论文集[C];2012年
2 李国柱;申慧芳;;辐射诱变选育苦荞高黄酮突变体的研究[A];第六届核农学青年科技工作者学术交流会暨中国核学会2011年学术年会核农学分会论文集[C];2011年
3 陈尚敇;王宗德;陈宏伟;邱业先;;添加锌素营养液对培养苦荞芽菜品质的影响[A];中国食品科学技术学会第五届年会暨第四届东西方食品业高层论坛论文摘要集[C];2007年
4 杨春;陕方;薛春生;段亚利;丁卫英;;黑苦荞醋软胶囊的生产工艺及稳定性研究[A];中国食品科学技术学会第五届年会暨第四届东西方食品业高层论坛论文摘要集[C];2007年
5 杨振煌;王转花;;美拉德反应对苦荞过敏原Fag t3免疫活性的影响[A];泛环渤海地区九省市生物化学与分子生物学会——2011年学术交流会论文集[C];2011年
6 王耀文;夏楠;杜晓磊;徐明;李艳琴;;苦荞SRAP和SSR分子标记遗传连锁图谱的构建[A];泛环渤海地区九省市生物化学与分子生物学会——2011年学术交流会论文集[C];2011年
7 李海平;李灵芝;黄中奎;邢国明;;锰、锌对苦荞芽菜生长和品质的影响[A];中国园艺学会第七届青年学术讨论会论文集[C];2006年
8 李海平;李灵芝;郑少文;邢国明;;硼、锌对苦荞芽菜生长和品质的影响[A];中国园艺学会第十届会员代表大会暨学术讨论会论文集[C];2005年
9 刘新宇;杨足君;冯娟;邓波;庞小峰;任正隆;;荞麦属植物分类的FTIR光谱研究[A];中国细胞生物学学会2005年学术大会、青年学术研讨会论文摘要集[C];2005年
相关重要报纸文章 前10条
1 王鹏 刘润合;灵丘两企业联手做强苦荞业[N];大同日报;2007年
2 本报记者 蒋映春;愿凉山苦荞茶:一路走好[N];凉山日报(汉);2006年
3 林东升;甘洛建成万亩黑苦荞示范基地[N];农民日报;2007年
4 记者 翟培天;凉山成为我国最大的苦荞生产基地[N];四川科技报;2006年
5 梁新民 王虎成;三晋苦荞研究开发达国际先进水平[N];太原日报;2006年
6 杨美;甘洛黑苦荞一枝独秀[N];凉山日报(汉);2007年
7 本报通讯员;环太苦荞 “药食同补”[N];凉山日报(汉);2008年
8 本报记者 杨扬;我州苦荞产业又有新发展[N];凉山日报(汉);2008年
9 本报记者 王小梅;博士与苦荞[N];贵州日报;2009年
10 本报记者 田雁 通讯员 刘润合 王鹏 刘富强;苦荞“种出”甜蜜生活[N];大同日报;2009年
相关博士学位论文 前5条
1 李宗杰;苦荞蛋白的制备、生物活性鉴定及其在猪群中的应用[D];南京农业大学;2016年
2 国旭丹;苦荞多酚及其改善内皮胰岛素抵抗的研究[D];西北农林科技大学;2013年
3 董新纯;UV胁迫下苦荞类黄酮代谢及其防御机制研究[D];山东农业大学;2006年
4 智秀娟;苦荞功能成分的研究及NIR技术在荞麦制品防伪中的应用[D];中国农业大学;2015年
5 李成磊;苦荞黄酮合成相关酶基因的克隆、芽期逆境胁迫中的应答及重组FtPAL和FtFLS的酶学活性研究[D];四川农业大学;2012年
相关硕士学位论文 前10条
1 刘泰驿;基于代谢组学与微生物组学的苦荞蛋白降脂机理的研究[D];上海应用技术大学;2017年
2 杨延利;萌发对苦荞黄酮合成的影响及萌发物抑菌、抗肿瘤活性的研究[D];上海师范大学;2011年
3 刘艳辉;苦荞麦脱壳工艺及主要参数的优化[D];内蒙古农业大学;2008年
4 李俊芳;苦荞在彝族习俗中的社会功能分析[D];云南大学;2012年
5 阮池银;云南小凉山彝族苦荞文化的环境人类学研究[D];云南大学;2012年
6 赵琳;苦荞萌发期生理活性及其蛋白抗菌性的研究[D];上海师范大学;2012年
7 李晓丹;苦荞胁迫萌发及功能性成分的研究[D];江南大学;2013年
8 陈英娇;苦荞蛋白酶解物的制备及抗菌活性的研究[D];上海师范大学;2015年
9 丁俐;苦荞叶茶加工过程中关键工艺参数及其香气成分的研究[D];山西农业大学;2015年
10 朱智慧;施硒对苦荞抗衰老生理和硒含量的影响[D];山西农业大学;2015年
本文编号:2413099
本文链接:https://www.wllwen.com/yixuelunwen/yufangyixuelunwen/2413099.html