基于Retinex理论的X射线医学图像算法的改进与应用
[Abstract]:X-ray has been widely used in medical imaging since Roentgen discovered it in 1895. The application of X-ray has promoted the development of medicine. In recent years, with the help of computer, people can synthesize three-dimensional images from different angles of X-ray images, and many diagnostic and therapeutic methods have emerged, which have entered the stage of digitization, tomography and 3D simulation reconstruction. Subsequently, a variety of medical image processing technology has also been rapid development. However, due to the very complex tissue and structure of the human body, coupled with the adverse effects of the system, equipment and environment on the X-ray, the quality of the medical image will eventually decline. This is mainly reflected in the blurring of the edge details and the poor contrast. Sometimes there is obvious noise that greatly affects the doctor's diagnosis and treatment of the disease. Therefore, in addition to the traditional digital image processing techniques, such as histogram processing, spatial and frequency domain filtering, we should also try new and improved methods. Retinex theory is one of them. Its advantages are that it can effectively compress the dynamic range of the image, enhance the edge details of the image, enhance the brightness of the image, improve the contrast of the image, and improve the visual effect of the image. It is very suitable for medical image with fuzzy details, low contrast, low resolution and poor visual effect. Therefore, according to the characteristics of X-ray medical images, a compound LRA (Logsig cumulative Reintex Algorithm) algorithm based on Retinex theory is proposed in this paper. The main work is as follows: firstly, the traditional image enhancement methods are analyzed and their characteristics are studied. Secondly, the noise model is constructed, and the latest image de-noising method is applied to de-noising the X-ray medical image. Finally, the Retinex theory is analyzed and studied, and the algorithms of each stage of the development of Retinex are realized. The logarithmic S-shape LogSig transfer function in neural network is used to replace the logarithmic function in the original multi-scale Retinex, and the image is compressed in dynamic range. On this basis, a composite LRA (LogSig cumulative Retinex Algorithm) algorithm is proposed. By comparing with the original algorithm, the shortcomings of the original Retinex algorithm for X-ray medical image application are found, and the advantages of this algorithm for X-ray medical image enhancement are explained.
【学位授予单位】:首都师范大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:R81;TP391.41
【参考文献】
相关期刊论文 前10条
1 王昱,胡莘,张保明;数字影像质量评价方法研究[J];测绘通报;2002年05期
2 胡韦伟;汪荣贵;方帅;胡琼;;基于双边滤波的Retinex图像增强算法[J];工程图学学报;2010年02期
3 冯安;王希常;;MATLAB在数字图像增强中的应用[J];信息技术;2007年05期
4 徐力平;蔡艳艳;;基于CLAHE的尘肺X线胸片增强技术[J];计算机应用;2007年S1期
5 刘茜;卢心红;李象霖;;基于多尺度Retinex的自适应图像增强方法[J];计算机应用;2009年08期
6 王小明;黄昶;李全彬;刘锦高;;改进的多尺度Retinex图像增强算法[J];计算机应用;2010年08期
7 沈丰;赵宇明;;基于实时Retinex与双边滤波的图像增强算法[J];计算机应用与软件;2009年11期
8 段竹;;医学图像增强算法研究[J];科学技术与工程;2009年03期
9 赵艳飞;高清维;卢一相;;基于多尺度Retinex算法的遥感图像增强[J];计算机技术与发展;2008年02期
10 刘辉;赵文杰;吴畏;;改进的多尺度Retinex红外图像增强算法[J];计算机技术与发展;2011年04期
相关博士学位论文 前1条
1 王彦臣;基于多尺度数字X光图像增强方法的研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2005年
相关硕士学位论文 前7条
1 付国文;基于Retinex的图像增强算法研究及实现[D];上海交通大学;2011年
2 洪明坚;图像增强的自适应直方图修正算法研究及其应用[D];重庆大学;2002年
3 陈雾;基于Retinex理论的图像增强算法研究[D];南京理工大学;2006年
4 肖燕峰;基于Retinex理论的图像增强恢复算法研究[D];上海交通大学;2007年
5 许可;医学图像增强处理与分析[D];吉林大学;2008年
6 侯长治;基于Retinex理论的手部红外热像图的增强处理研究[D];河北工业大学;2007年
7 任斌;基于Retinex图像增强算法研究与实现[D];南京理工大学;2009年
,本文编号:2265181
本文链接:https://www.wllwen.com/yixuelunwen/yundongyixue/2265181.html